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FRENET EQUATIONS OF NULL CURVES

DaAe Ho Jin

ABSTRACT. The purpose of this paper is to study the geometry of null curves in
a 6-dimensional semi-Riemannian manifold M, of index g, since the general n-
dimensional cases are too complicated. We show that it is possible to construct
three types of Frenet equations of null curves in My, supported by one example.
We find each types of Frenet equations invariant under any causal change. And we
discuss some properties of null curves in M,.

1. INTRODUCTION

Theory of space curves of a Riemannian manifold is fully developed and its local
and global geometry is well-known. But its counter part of the curve theory of a
semi-Riemannian manifold is relatively new and in a developing stage. In case of
semi-Riemannian manifolds, there are three categories of curves, namely, spacelike,
timelike and null, depending on their causal character. We know from O’Neill [10],
that the study of timelike curves has many similarities with the spacelike curves.
However, since the induced metric of a null curve is degenerate, this case is much
more complicated and also different from the non-degenerate case.

Duggal & Bejancu [4, Chapter 3] published their work on “general theory of null
curves in Lorentz manifolds”. They constructed a Frenet frame and proved the
fundamental existence and uniqueness theorem for this class of null curves. Their
study was restricted to Lorentz manifold, since for the general semi-Riemannian
manifolds of index greater than one, they have shown (by an example) that their
Frenet frame is not invariant with respect to causal change of any of its generating
vector fields. '
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The objective of this paper is to study on null curves in a 6-dimensional semi-
Riemannian manifold M, of index ¢, since the general n-dimensional cases are too
complicated. And we guess their Frenet equations from the 6-dimensional cases. We
show that it is possible to construct three types of Frenet frames suitable for M,
and cite one example, each invariant under any causal change. This is then followed
by constructing general Frenet equations (called compound Frenet equations) which
include all the possible forms of the three types. And we study some properties of
null curves in M.

2. TRANSVERSAL VECTOR BUNDLES

Let My be a real 6-dimensional semi-Riemannian manifold of constant index
g (1 < ¢ <3) and C be a smooth null curve in M, locally given by

@ =2(t), telcR, i€{0,1,...,5}

for a coordinate neighborhood U on C. Since C' is a null curve, the tangent vector
field % = ) on U satisfies g (A, A) = 0. Denote by T'C the tangent bundle of C' and
TC* the TC-perp. Clearly, TC* is a vector bundle over C of rank 5 and TC is
a vector subbundle of TC* of rank 1 (cf. Duggal & Bejancu [4] and O’Neill [10]).
This implies that TC* is not complementary to TC in TM,|c. Thus we must find
complementary vector bundle to TC in TM,, which will play the role of the normal
bundle T'C* consistent with the classical non-degenerate theory. A few researchers
have done research on this matter dealing with only specified problems (¢f. Bonnor
[2], Duggal [3], Graves [6], Ikawa [8]). Duggal & Bejancu [4] developed a general
mathematical theory to deal with the null case, which we brief as follows:

Suppose S(T'C1) denotes the complementary vector subbundle to TC in TC*,
i. e., we have

TC+ =TC18(TCH),

where 1 means the orthogonal direct sum. It follows that S(TC') is a non-
degenerate 4-dimensional vector subbundle of TM,. We call S(T'C*) a screen vector

bundle of C, which being non-degenerate, we have
TM,|c = S(TCH) L S(TCH)*+, (1)

where S (TC’l)—L is a 2-dimensional complementary orthogonal vector subbundle to
S(TC+) in TM,|c.
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Throughout this paper we denote by F(C) the algebra of smooth functions on C
and by I'(E) the F(C) module of smooth sections of a vector bundle E over C. We

use the same notation for any other vector bundle.

Theorem 2.1 (Duggal & Bejancu [4]). Let C be a null curve on a semi-Riemannian
manifold My and S(T'C*) a screen vector bundle of C. Then there ezists a unique
vector bundle ntr(C) over C of rank 1, such that on each coordinate neighborhood
U C C there is a unique section N € I'(ntr(C)|y) satisfying

g\ N)=1, ¢(N,N)=g(N,X)=0 (2)
for every X € T(S(TCH)|y).

We call ntr(C) the null transversal bundle of C with respect to S(TC1). Next
consider the vector bundle

tr(C) = ntr(C)L S(TCH),

which according to (1) and (2) is complementary but not orthogonal to T'C in
TMy|c. More precisely, we have

TM,|c = TC & tr(C) = (TC @ ntr(C)) L S(TC). (3)

We call tr(C) the transversal vector bundle of C with respect to S(T'C1). The vector
field N in Theorem 2.1 is called the null transversal vector field of C' with respect
to A. As {\, N} is a null basis of I'((T'C & ntr(C))|y) satisfying (2), we obtain

Proposition 2.1 (Duggal & Bejancu [4]). Let C be a null curve on a semi-Rie-
mannian manifold My. Then any screen vector bundle of C is semi-Riemannian of

index g — 1.

3. FRENET EQUATIONS OF TYPE 1

Let C be a null curve on M3 and N be the null transversal vector field of C.
Denote V the Levi-Civita connection on Mjs. In this section we study a class of
null curves C' whose Frenet frame is made up of two null vector fields A\ and N,
two timelike and two spacelike vector fields. We denote the Frenet equations of this
particular class of C' by Type 1.

From g(A,A) =0 and g(A, N) = 1 we have

gMAAA) =0 and g(Va, N) = —g(A, VAN) = h,
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where A is a smooth function on /. These relations and the equation (3) imply that
VaA = hA + 5y,

where S; € S(T'C+). Thus S is everywhere perpendicular to both X and N. Since
S(TC%) is a semi-Riemannian vector bundle of rank 4 and index 2, in general there
are three cases (timelike, spacelike and null) by the causality of the vector field S;.

In this section we assume that S7 is non-null. Based on this restriction, we define

the first curvature function x, by x; = g1€1, where
a1 = |51

and €; = 1 or —1 according as S is spacelike or timelike, i. e., €1 is the signature
of S1. Now we set Uy = Sy/o1 so that U is a unit vector field along C' which is

everywhere perpendicular to A and N. Thus using above, we have
VaA = hA + x161U7.

Now, from g(VAN, ) = —h, g(VoaN, N) = 0 and g(V,N,U1) = k2, where k2 denotes
the second curvature function. We have

VaN = —hN + koe Uy + 5o,

where S is a vector field on S(T'C1). Thus S3 is perpendicular to A\, N and U;. We
assume that Ss is also non-null. Define the third curvature function k3 by k3 = g2¢eo,

where
o2 = || T3]

and &7 is the signature of Sp. Set Uy = S2/02 so that Us is also a unit vector field
along C and is everywhere parallel to S3. Thus we have

WZN = —hN + koe1U1 + k3eaUs.

Repeating above process we have an orthonormal basis {U;, Uz, Us,Us} of S (TCt)
which is made up of two timelikes and two spacelikes. Setting

W; = EiUi, 1€ {1,2,3,4},
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we obtain the following equations

(Vi = hA+m WA,

VN = —hN + koW; + k3Ws,

< eiVZW1 = =k — k1IN + £aW3 + ks W,
eaV\Wa = —k3A — kaW1 + kW3 + k7 Wy,
esVaWs = —ksW1 — keW2 + kW,
LEaZ\Wy = —k7 W — kgW3,

(4)

where h and {ki1,k2,...,Ks} are smooth functions on U, {W1, Wy, W3, Wy} is a
certain orthonormal basis of I'(S(TC1)|y) and &; = g(W;, W;) is the signature of
each W, such that ; = +1 or —1. We call

F={\NW,... Wy} (5)

a Frenet frame of Type 1 on Mg along C with respect to a given screen vector bundle
S(TC1) and the equations (4) are called its Frenet equations of Type 1. Finally,
the functions {1, k2, ..., ks} are called curvature functions of C with respect to the
frame Fj.

Remark 1. Since the screen bundle is semi-Riemannian of index 2, this implies that
two of W;’s are timelikes and another two are spacelikes. We know that the choice
of different timelikes W; generates different Frenet equations of the same type.

4. FRENET EQUATIONS OF TYPE 2

In this section we study a class of null curves C' whose Frenet frame is generated
by a pseudo-orthonormal basis consisting of the two null vector fields A and N,
additional two null vector fields L; and L;;, such that g(L;, L;11) = 1, one timelike
vector field U; and one spacelike vector field Uy, {j,k} # {i,7+ 1}. If we set

1 1

Ui = —=(Li — Liy1), and Uppy =
\/5( i+1), an =7

then U; and Uy are timelike and spacelike vector fields, respectively, and F =
{\N,Uy,...,Us} is a Frenet frame of C, but have Frenet equations of another
type. We denote the Frenet equations of this particular class of C by Type 2. There
are three choices for {L;, L;y1}: {L1, L2}, {L2, L3} and {L3, L4}.

(Li + Ligy) (6)
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To choose {L;, L2}, we let the vector field V A — hA be null and define the

curvature function K7 by
ViaA = hA+ Ki Ly,
where Ly € T'(S(T'C1)). Thus L; is a null vector field along C which is everywhere
perpendicular to A and N. Since S(TC*) is semi-Riemannian vector bundle of
rank 4, we can take a vector field V along C such that g(L;,V) # 0, otherwise
S(TC*) is degenerate. Set
1 g(V, V)
be = 9(L1, V) {V - g(Ll,V)Ll} ’

then g(L1, Lo) = 1 along C. Set this case so that the equation (6) holds for ¢ = 1.
Therefore Uy and Us are perpendicular to A and N and we have

VoA = hA + k161U + exlUs
where k1 = —11 = —-% and ¢; is the signature of each U;. Also,
g(VAN,X) = —h, g(VaN,N) =0, g(VaN,U1) = k2, g(VaN,Us) = k3
implies that
VAN = —hN + koe1U1 + K3eoUs + S3,

where S3 is a vector field perpendicular to A, N,U; and U,. Since S(T'C*) is a
semi-Riemannian vector bundle of index 2, there are three cases by the causality
of the vector field S3. In this section we assume that Ss is non-null. Now define
a torsion function 73 by 73 = o033 where o3 = [|S3]| and €3 is the signature of
S3. Set Us = S3/03, then Us is a unit non-null vector field along C' which is also
perpendicular to A, V,U; and U;. Thus we obtain

VLN = —hN + kae1 Uy + k3eaUs + 13e3U3. (7)

Also from the following results

9(VAU1, A) = ~ka,
g(VaUi, N) = —ka,
9(VaUr, Uh) =0,
g(V\Uy, U2) = Ky,
9(VaU1,Us) = s,

we obtain
VhUr = —kod — K1 N + kaeaUs + Kk5e3U3 + Sy
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where Sy is a non-null vector field perpendicular to A\, N,U;,U; and Us. Now we

define another torsion function 75 by 75 = o464 where o4 = ||S4||. Set Uy = S4/04,

then Uy is also a unit non-null vector field along C' which is everywhere perpendicular

to A, N, Uy, Uz and Us. Thus we obtain
WWU1 = —koA — k1N + k4e2Us + Kk563U3 + 1564U4.
In a similar way we get

WUy = —k3A — 1N — k4e1U1 + KkeesUs + kreqUy,

U\Us = —73) — k5e1U1 — Kkee2lUz + kgeaUy,
WUy = —1561U1 — kreaUs — kgesUs,
where
ke = g(VaU2,Us), k7 = g(Vala,Us), kg = g(VaUs, Us).
Setting

W, =¢U;, 1€{1,2,3,4}
we have the following equations
(VA)\ = hA + ki W1+ 1 Wa,
s IN = —hN + koW + kaWy + 13 W3,
eitVaW: = —kod — K1 N + k4Wo + ksW3 + 15 Wy,
eaVZWWo = —k3A — TN — kW1 + keW3 + k7 Wy,
esVAW3 = —13\ — ksW) — keWa + kgWy,
LEaVWy = —1s W — 57 Wo — KkgWs.

In the above case, we call

Fz(l) = {\, N, Wy, Wa, W3, Wy}

(8)

(10)

(11)

a Frenet frame of Type 2 on Mgy along C with respect to a given screen vector
bundle S(T'Ct) and the equations (10) its Frenet equations of Type 2. The functions
{K1,k2,...,k8} and {71, 73,75} are called the curvature functions and the torsion

functions of C with respect to the frame Fz(l).

On the other hand, using {L1, L2} such that g(L;,Ls) = 1 and
Q(V,\N, )‘) = —ha Q(VANa Ll) = K33 g(V)\N, L2) = K2,

we can write
VaN = —hN + KoLy + K3Ls + Q3
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where ()3 is perpendicular to A\, N, L; and Lq. Also

VAN +hN — KoLy — K3Ls
K K;
= VaN +hN — 22U, + Uy) —
V2 V2

K3—K2> <K3+K2)
=WN+hWhN+|——— U - | ——= | U-
’ ( V2 )t vz )t

(U2 —Un)

and

K3 — Ky
f{g V2
Ko + K3

Using above results and the equation (7) we conclude that Q3 = m3e3U3. Therefore

ko = g(VLN,Up) = (WWN, Ly — Ly)} =

K3 = g(V)\N, Uz) = (V,\N, L1+ Lg)} =

VAN = —hN + KoLj + K3Lg + 13€3U3. (12)
In a similar way we obtain
VaLy = —K3\ + K4Ly + Kse3Us + Kg4U 4, (13)
Vialy = —KaA — KyN — K4Lg + KresUs + Kgg4Uy, (14)
where Uy is a unit non-null vector field perpendicular to A\, N, L, L, and Us, and
the smooth functions K; (i = 4,5,7) and K; (j = 6,8) are defined by
K4 = g(VaLy, L2) = —g(L1, VaL2),
Ks = g(VAL1,Us) = —g(L1, VAUs),
Ko = g(VAL1,Us) = —g(L1, VaUa),
K7 =g(VaLs,Us) = —g(L2, VAUs),
Kg =g(VaLo,Us) = —g(L2, VaUa).

Next, by the transformations (6) for i = 1 we have

WU = Wiy — V)\Lz), WUy = Walq + V)\Lg).

= =
V2 V2
Using (13) and (14) in above equations and the following results
kg = g(ValUr,Uz) = g(VaL1, L2) = Ky,

1
— g(VAU1,Us) = —=g(VaL1 — VaLa, Us) = — (K5 — K7),
9(Va\U1, Us) \/ég(,\l \Lo,Us) = \/5(5 7)

1
ke = g(V\Ua, U3) = —\/-i-g(V,\Ll + VLo, Us) = T(Ks + K7),
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we obtain
Kez4Ug = KeeaUs, Kgz,Uy = KgeqUs,
where
K_N7+T5 _ k71— Ts
6 \/§ ) 8 \/5 .

Thus (13) and (14) become
VaL1 = —K3X + K4L1 + KsesUs + KgegUs,
VLo = ~KoA — K1 N — K4Lg + Kre3Us + KgeqUy.
In a similar way we get
VU3 = —m3\ — K7L — KsLo + KkgeqUy,
VUi = —KgLi — KeLg — KgeaUs.

Setting
W; =¢gU;, 1i€{3,4},

we get the following equations

'V,\)\ =h/\+K1L1,
VAN = —~hN + Kol1 + K3Ly + 3W3,
A\ = —K3)\ + ka1 + KsW3 + KgWy, (15)
VLo = —KoA— KiN — kqlg + K; W3 + KgWy,
e3VaW3 = —m3A — K7L1 — K5Ly + kgWy,
LE4V,\W4 = ~Kgl1 — KgLo — kgWs3,
where
- + K2
Ki= /3 =\/§,K=K3 I€2,K=I‘63 ’
1 K1 T 2 73 3 /2
Kg + K5 K7+ T Kg — K5 K7 — Ty
K5 = , Kg= , Kr= , Kg=——°—.
T2 T2 TV TV
In this case, we also call
F" = {\ N, Ly, Ly, W3, Wy} (16)

a Frenet frame of Type 2 on M3 along C with respect to a given screen vector bundle
S(TC1) and the equations (15) its Frenet equations of Type 2.
In the next cases, to choose {L2, L3} and {Lg3, L4}, we let the vector fields

VoN + hN — koUy and WVHhUj + kaed + k1N — k4Us
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be null in turn, then using a procedure same as above for each such cases, we obtain

the equations of the form (10) with the torsion functions {r; = 0,73 = —&3, 75}, or
equivalently,
(VA = hA + k1 W7,
A%V = —hN + koW7 + K3Lo,
< eitVaW, = —koA — kiN + KLy + KsL3 + 15 Wy, 17)
Why =—-KsWi+keLo + KWy,
Wls = —K3\—- K4W; — keLs+ KgWy,
(eaV\Wy = —1sW) — KgLo — KslLs,
where
% = —Kg, %(Iﬁ — Ks5) = —K4, 71—5(1{4 + Ks) = ks,
% = T3, 71—2‘(K8 — Ko) = k7, %(Ks + Kg) = ks,
and {r; = 0,73 = 0,75 = —Ks}, or equivalently,
(VA = hA+m),
\% Y = —hN + koW1 + k3Wa,
Jervn = —koA — Ky N + kaW, + K5 Ls, s
eaVaWs = —k3gA — kyW1 + KLz + K7Ly,
VL3 = —K7Wa+ kgLs,
WLy =—-KsWi — KeWs — kgL,
where
5\/—% = —HKs =Ts, %(Ks*K7)=ﬁe, 71—5(K6+K7)=n7,

respectively. In the cases {Lg, L3} and {L3, L4}, we also call
F® = {\ N,Wy, Ly, Ls,Wa} and F{ = {\ N, Wi, Wa, L3, Ls},

respectively, Frenet frames of Type 2 on M3 along C with respect to a given screen
vector bundle S(T'C*), and the equations (17) and (18) their Frenet equations of
Type 2, respectively.

Remark 2. We know that the Frenet equations (10) include all three different Frenet
equations of Type 2. Hence we call the equations (10) the general Frenet equations



FRENET EQUATIONS OF NULL CURVES 81

of Type 2 of the null curve C and Fy = {\, N, W1,..., Wy} the general Frenet frame
of Type 2 on M3 along the null curve C.

5. FRENET EQUATIONS OF TYPE 3

In this section we study a class of null curves C whose Frenet frame is generated
by a pseudo-orthonormal basis consisting of the two null vector fields A and N and
additional four null vector fields Ly, Ly, L3 and L4 such that g(L;, Li+1) =1, i = 1, 3.
If we set also
Li — Lit1 oy = Lit Lia

\/5 s i+1 — \/—2— 3
then {U1,Us} and {Us, Uy} are timelike and spacelike vector fields respectively, and
F ={\N,Ui,...,Us} is also a Frenet frame of C, but have Frenet equations of the
other type. We denote the Frenet equations of this particular class of C by Type 3.

Ui = i=1,3. (19)

There is only one choice for {L;, L2, L3, L4}
In the section 4 for Type 2, there exist two null vector fields {L;, L2}, or equiva-
lently, one timelike vector field and one spacelike vector field {U;, Uz} satisfying
VoA =hh+ K1L1 = hA + k161Uy + 1e9Us,
{V,\N = —hN + KoL + K3Lg + S3 = —hN + kee1Uy + k3eaUs + Ss.
In this section we let the vector field S3 be null and define the curvature function

T3 by
VoaN = —hAN + KoL + K3Ly +T3L3 = —hN + koejUp + k3eoUs + T5L3,

(20)

where L3 is a null vector field along C perpendicular to A\, N, Ly, Ls,U; and Us.
Then there exists another null vector field L4 along C such that g(Ls, L4) = 1 and is
everywhere perpendicular to A\, N, L, Ly, U; and Us,. Set this case so that the equa-
tion (19) hold for ¢ = 3. Therefore Us and Uy are perpendicular to A\, N, L1, Ly, U;
and U; and we have

VAN = —hN + koe1U; + k3eaUs + 13e3U3 + T0e4Uy, (21)
where 7 = —13 = % Also from the following results

Q(VAUI,/\) = —Ki, g(V/\UlaN) = —Kk2, g(VAUlaUl) = 07
g(Va\U1,Uz) = Ky, 9(VaU1,Us) = ks, g(\U1,Us) = 5,
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VW1 = —kKaA — KN + kgeolUs + ksesUs 4 m5e4Uy. (22)

In a similar way we get

Setting

s = —k3A — N — kqe1U1 + reesUs + kreyaUy,
V\U3s = —13A = kse1U1 — KkeeaUs + kgeaUs, (23)

V)\U4 = —7'2)\ - 7'561U1 — K762U2 - R883U3.

W,=¢gU;, i€ {1,2,3,4}

we have the following equations

In this case, we call

(VA = hA + ks1W) + nWs,
VN = —hN + oW1 + k3Wo + 13W3 + 7o Wy,
J a AW = —ko — 61N + kaWa + ks W3 + s W, (24)
eohZWy = —k3A — N — ka W1 + kW3 + w7 Wy,
esVhWWy = —mh — ksWp — kgWo + kgWy,
L eaVaAWy = —1 )\ — 1sWy — ke Wo — kgWs.
F3 = {\ N,Wy, Wy, W3, Wy} (25)

a Frenet frame of Type 8 on M3 along C with respect to a give screen vector
bundle S(T'C+) and the equations (24) its Frenet equations of Type 3. The functions

{k1, ke, ..

.,ks} and {7, T, 73,75} are called the curvature functions and the torsion

functions of C with respect to the frame Fj.
On the other hand, using the set of null vector fields {Li, Ly, L3, L4} such that
g(L1, L) =1, g(L3, L4) = 1 and all other g(L;, L;) =0, ¢ < j, we have

(V)\)\ =hA+ K1 L,

VaN = —hN + KoLy + KsLy + T5Ls,

VaLi = ~K3h + KiLy +TyLg + Ts Ly,
VaLly = —KoA — KiN — KoLy + TsLs + Ty La,
VaLs = —T7Ly — TsLs + Tg L3,

| VaLs = —T3\ ~ TsLy — TsLa.

(26)

In this case, we also call

F3={M N, L1, Ly, L3, L4} (27)
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a Frenet frame of Type 3 on M along C with respect to a given screen vector
bundle S(T'C*) and the equations (26) its Frenet equations of Type 3. The functions
{Ki,...,Ks} and {T5s,...,Tg} are called the curvature functions and the torsion
functions of C with respect to the frame F3.

Next, by the transformations (19) for i = 3, we have

W3 = %(VAL3 - VaLg), U= %(VALS + VALy).
Using the following relations
T4\;§T5 = %Q(VALDIHI — L3) = —g(VAL1,Us) = — K,
T4\“/L§T5 - \/%g(VALl,m + L3) = g(VaLy,Us) = Ks,
T6\;§T7 = 71—2-9(VAL2,L4 — L3) = —g(V\L1,U3) = — K,
P = 5oVl L+ L) = (AL, Ua) = Ko,

Ty = g(VaLs, L) = g(V\U3, Us) = Kg = kg,
TyL3z + T5Ls = —K5Uz + KeUs,
TeLs +TrLy = —K7Usz + KUy,

we have
(Vo) =hA+ KiLq,
aN = —~hN + KoL + K3Ly + sW3 + oWy,
VaL1 = —=K3A+ ka1 + KsW3 + KgWy,
q (28)
VLo = —KoA — KiN — k4o + K;W3 + KgWjy,
esVaWs = —mA — K7Ly — K5Lg + kgWy,
\EaVZ\Wy = —1p — KgL1 — KgLy — kgWs,
where
K3 — K K3+ K
KII—\/§K/13 K2: 3\/§ 2, K3= 3\/5 23 K4=K’4’
K5_l€6+li5 K6:/‘67+Ts K7:f€6—/€5 K8=f€7—7'5

In this case, we also call

F3 ={A\,N, Ly, Ly, W3, Wy} (29)
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a Frenet frame of Type 3 on M3 along C with respect to a given screen vector bundle
S(TC) and the equations (28) its Frenet equations of Type 3.

Remark 3. We know that the Frenet equations (24) include all of six different Frenet
equations of Type 1 (in the case 71 = 7, = 73 = 75 = 0), three different Frenet
equations of Type 2 (in the case 75 = 0) and one Frenet equations of Type 3. By
the same calculation, we find that My have Frenet equations of two types, named
by Type 1 and Type 2, up to the signatures of W;’s and M; have Frenet equations
of only one type, named by Type 1, up to the signatures of W;’s. Hence we call
the equations (24) the compound Frenet equations of the null curve C and F =
{\, N, W1,..., Wy} the compound Frenet frame on M, (1 < g < 3) along C.

Remark 4. In general, let (M, g) be a real (m + 2)-dimensional semi-Riemannian
manifold of index q and C be a smooth null curve in M. We know that C has k-type
Frenet equations, namely Type 1, Type 2, ..., Type k, where £ = min{g, m+2—q}.

Example 1. Let Rg be a 6-dimensional semi-Riemannian space of index 3 with the
semi-Riemannian metric
g(z,y) = —2%° — iyl — 22? + 239% + 2yt + 255,

Suppose C is a null curve in Rg given by the equations

C:(Acost, Asint, Bsinht, Bcosht, At, Bt)
where A, B,t € R such that (A, B) # (0,0). Then,

A = (—Asint, Acost, Bcosht, Bsinht, A, B),

VA = (—Acost,—Asint, Bsinht, Bcosht,0,0).

If we take a spacelike vector field V along C such that

__ (07070,()’1’0)7 lfA#O,
"~ 1(0,0,0,0,0,1), if B#0,

then g(A, V) = A or B and g(V,V) = 1. By the relation

_ 1 _g,V)
N=o7 {V 2g(A,V>A}’

we obtain the following null transversal vector field

-2%5(Asin t,—Acost,—Bcosht,—Bsinht, A,—B), if A#0,

ﬁﬁ(/l sint, —Acost,—Bcosht,—Bsinht,—A,B), if B#0.

N =
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We need to know the causal character of the vector field H(t) = VyA — hA along C.
By direct calculations we obtain

g(H(t),H(t)) = B — A%,

Hence H(t) is spacelike, timelike or lightlike according as B? > A%, B? < A? or
B? = A? respectively.
Choose A = 1 and B = /2, then H(t) is spacelike and the curve

C : (cost, sint, v2sinht, V2cosht, t, \/§t)

falls in the Type 1 with the Frenet frame F' = {\, N, W1, W, W3, Wy} as follows

A = (—sint, cost, V2 cosht,v2sinht, 1, \/5),

1

N = §(sint, —cost, —V2cosht, —v/2sinht, 1, —v/2),
Wi = (—cost, —sint, v2sinht, V2 cosht,0, 0),
Wa = (—V2cost, —ﬁsint,sinht,cosht,0,0),
W3 = (—v2sint, v2cost,0,0,0, 1),
Wy = (\/§Sint, —Vv/2cost, —cosh ¢, —sinht, 0, —-2).

I

The Frenet equations (4) and the curvature functions are given by

1
WA = Wy, VN = —EWI, WW; = %)\—N— V2Ws,
VWy = —2Ws — Wy, VW3 = —V2W; +2W,, VAW, = —W;,

with
1
h=0, I€1=1, R2=—-2-, K,3=0, l€4=0,
Ky =—vV2, kg =2, k=1, kg =0.
Next we set A = /2 and B = 1. The curve
C: (V2cost, V2sint, sinht, cosht, v/2t, t)
also falls in Type 1 with the Frenet frame F' = {\, N, W}, Wy, W3, W,} as follows
A= (—\/§sin t,V/2cost,cosht,sinht, V2, 1),

1
N = -2-(\/§sint,—\/§cost,—cosht,—sinht,—\/—2—, 1),
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V2 cost, —v/2sint,sinht,cosht, 0, 0),
cost, —sint, v2sinht, v2cosht, 0, 0),
0,0,v2cosht,v/2sinht,1,0),

sint, —cost, —v2cosht, —v2sinht, ~2, 0).

W= (-

Wy = (-

W3 = (
Wy = (

The Frenet equations (4) and the curvature functions are given by

WA = Wy, VAN = —%Wl, W = —%)\+N+ V2Ws
WWWay = 2Wa + Wy, WVaWa = —V2Wi + 2Wa, VaW, = —Wh,
with
h=0, Ky =1, n2=—%, k3 =0, kg =0,
Ky =—V2, kg =2, kr =1, kg =0.
Finally we set A = B = 1, then H(t) is lightlike. Therefore, the curve
C : (cost, sint, sinht, cosht, t, t)
falls in the Type 3 with the Frenet frame F' = {\, N, L, Lo, L3, L4} as follows
A = (—sint, cost, cosht,sinht,1,1),
N = %(sint, —cost,—cosht,—sinht, 1, —1),
L; = (—cost, —sint,sinht,cosht, 0, 0),
Ly = %(cost,sint,sinht,cosht, 0, 0),
L3 = (—sint,cost,0,0,0,1),
Ly = (0,0,cosht,sinht,0,1).

The Frenet equations (26) and the curvature and torsion functions are given by

1
VA = Ly, 2N = ——2-L1,
1 1
Wi = =Ls+ Ly, VIg = 5)\ — N - —2-(L3 + L4),
1 1
VL3 = §L1 — Ly, Va\Ly = §L1,
with )
h = Oy Kl = 17 K2 = _5) K3 = 0, K4 = 05
1

T3=07 T4=_1a T5=1> T6_T7:—_ T8_0
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The Frenet equations (28) gives

1
VaA = Ly, WWN = —=Li, WAL = V2Ws,
2
VoL —l)\—N——l—W LW ——1—L VLW, ——1—(L — Lo)
A2 = 2 \/5 4, AVV3 \/5 2y AV¥q \/§ 1 2/
Also the Frenet equations (24) gives
VoA = —(Wg - Wi
\/— )s
WWN = —= - Wy
\/-( )
1 1 1
VWi = —=N — W3 — -W,,
f f 2
1
W,
VaWy = \/— \/—N+W3 D) 4,
VaWs3 = §(W1 + WQ),
Wy = —-Wj.

6. INVARIANCE OF FRENET FRAMES

In this section we show that each type of the Frenet frames always transform
to the same type by the canonical parameter transformations of the coordinate
neighborhood of C and the screen vector bundle. And we discuss some properties
of null curves in M,.

First, with respect to a given screen vector bundle S(T'C*'), we consider two
Frenet frames F' and F™* along two neighborhoods U and U* respectively with non-

null intersection. Then we have

. dt . dt*
M=—mh N'=—N, (30)
4
Wy=> AlWs, 1<a<i4, (31)
B=1

where Ag are smooth functions on & NU* and the matrix (Ag(x)) is an element of
the semi-orthogonal group O(¢ — 1,4 — ¢+ 1) for any z € U NU*.
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If we write the first and second equations of the compound Frenet equations (24)
for both F' and F™* and use (30) and (31), we obtain

d2t dt\? , dt
(55,73, 0, 0) (48(2)) = (m1,m1, 0, 0) (o2 2 (33)
sy 11y MV (e’ sy i1y My dt* s
(5,3, 73,78) ((AB(2) ) = (2, 53,73, 72). (34)

From these relations we have

Lemma 1. Let C be a null curve of a semi-Riemannian manifold My, and F and
F* be two Frenet frames of Type 1 on U and U* with their respective curvature
functions, induced by the same screen vector bundle S(TC<). Suppose kyk3 # 0 on
UNU* #£ @. Then at any point of U NU* we have

{ dt 2
K} = K14y (d_t*> ,
Ky = KpAyj,
4 (35)
k3 = K3d,
dt
\’i; = 'iaAa—la'i';)

where 4 < o < 8 and A; = £1.

Proof. From the relations (33) satisfying 71 = 77 = 0, we have k} # 0 on U NU*
and A2 = A3 = A% = 0. Since (A5(z)) is a semi-orthogonal matrix, we infer that
Al = A; = £1 and A} = A} = A} = 0. Then from the second equation of Type 1
with respect to F' and F™*, and taking into account that x3 # 0, we obtain k3 # 0 on
U NU* which implies A3 = A2 = A} = A2 = 0 and A2 = A; = £1. Repeating this
process for all other equations we obtain all the relations in (35), which completes
the proof. 0

Proposition 6.1. Let C be a null curve of a semi-Riemannian manifold My, and F
and F* be two Frenet frames of Type 1 onU and U* with their respective curvature
functions, induced by the same screen vector bundle S(T'CL). Suppose kik3 # 0 on
UNU* # &. Then the second and third curvatures k2 and k3 are invariant to the

coordinate transformations.
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Next, we let F' and F™* be Frenet frames of Type 2 or 3 on I/ and U* and assume
that the orthonormal basis of a screen vector bundle S(T'C*) of C have the signature
(=, +, (%), +), where (£) is + or —, according to the index g = 2 or ¢ = 3. From
the equation (33) we have

because 77 = —k] and 73 = —k1. Using (31), (36) and L; = %(Wg — W1) due to
(6) and (19), we obtain

Li = (A1 - 49) Ly (37)
where Al — A} # 0, otherwise the matrix (Ag(a:)) is singular.

Since W7 is a timlike vector field and Wy is a spacelike vector fields, the first row
(Al,... A}) of (Ag(:c)) is a timelike vector field and the second row (A3, ..., A%) is
a spacelike vector field of R;‘_l and these vectors are perpendicular to each other.
Thus, we have

(A1)? ~ (A])? - 1= (43)® - (43)* + 1 = A1A] - Aj43.

From this relation we have the following two relations

ATA - ATA =1, (A-ADAf+ 4D =1 (38)
Using the relations
1
L \—/_—(WQ—'Wl) L2 7(W2+W1)
1 1
W, = T(Lz“Ll) W2=ﬁ(L2+L1),
we have
1 1
Wr=—=(A2 — AL, + —=(A2 + AN Lo+ A2W5 + A2Wa, o€ {1,2} (39
\/5( a)l \/i(a a)2 a3+a4a{}()

- %(A% + A2 - AY = ADLy 4 (AL + AN Lo + VAW, + VEAYW..  (40)
The scalar product of L} and W, L3 and L3, and L3 and W} provide
=43
A=A,
(A5 + A7 — A1 — A3)(A] + AT + A} + A7) = 4{(A}) — (A1)},
(A5 — A)(AL + AT + 47 + AD) = 4{A}A] - A1AL}, e {3,4},
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respectively. Using (36) and (38), the last two equations reduce
Af+ AT - A7 - A3 = 2{(A])* - (AD)°H(A] - A4)),
AL — Ay =2{A45 - AJAL} (AT - A)), e (3,4},

respectively. From this two equations, we have

Af - A1 = {(A])" - (AD*}(4] - 43),

A] - 43 =2{(4])* - (41)*}(A] - 4)),

AL = {404 - ATAHAL - 4)), ae {34}
Thus if A} = A} =0, then
Ad=Al=Al=Al=A4A2=4A2=0and A} = 43, A} = A2

Since the matrix (Ag(m)) is an element of semi-orthogonal group O(g—1,4—q+1)
and the signature of the orthonormal basis {W;, Wy, W3, Wy} of the screen vector
bundle S(T'C) is (=, +, (£),+), the third and the fourth rows of (A2 (z)) satisfy

(B)(AD* + (43 = (2)1, (£)(AD*+ (41" =1, ()A34%+ Aj4] =0,
()43 + (4D = (2)1, (E)(43)° + (49)° =1, (2)AfA3+ AjAl =0,
This relations provide the following two relations:
A3=A%, Aj=A7 or Aj=-A} Aj=-4]

with the aid of the fact that A3A] — A3A3 = (£)1.
Since the matrix (Ag(a:)) is a semi-orthogonal, this matrix is orthogonally diag-

onalizable by an orthogonal diagonalization P, 1. e.,

cosh 01 sinh 01 0 0
sinh6; cosh@,; 0 0
(PA(@)P) =
0 0 cosh 8 sinh 6,
0 0 (£)sinhf; (+)coshb,
Assume yhat, no loss generality, this matrix also denote
Al A2l 0 O
Al A2l 0 O
a( 7)) =
(45(=)) 0 o0 |A} A

0 0

Al Al
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The coordinate transformation (31) of this form is called canonical. For the canonical
transformation, from the equations (39) and (40), we obtain

Ly = (A} + A3)La,

4
Wa=> ABWs, o€ {3,4}.
B=3
Exchange the equations (15) for i« = 2,3 and ¢ = 3,4 we obtain the following
general relations

LY = (A - §+1)Lz‘, 1= (Af + A2+1)Li+1,

4
Wa=Y ABWs, ae{1,2}.
B=1
Thus we have

Proposition 6.2. Let C be a null curve of a semi-Riemannian manifold My and
F and F* be two Frenet frames of Type 2 on U NU™, induced by the same screen
vector bundle S(TC*L). Suppose k1 # 0 on U NU*. Then S(TCH) is an orthogo-
nal direct sum of two invariant subspaces Span{L;, L;11} = Span{W;,W;;1} and
Span{Wl,Wi,Wi+1,W4} by the canonical transformation of coordinate neighbor-
hoods of C, where overhat (") denotes the deleted symbol for that term.

Similarly, from the Frenet equations (26), we obtain the following general relations
L: = (A;L — A§+1)Li’ 2‘4—1 = (A; + A2+1)Li+1, =13

Proposition 6.3. Let C be a null curve of a semi-Riemannian manifold My and F
and F* be two Frenet frames of Type 3 on U NU*, induced by the same screen vector
bundle S(TC*). Suppose k1 # 0 on U NU*. Then S(TC*) is a orthogonal direct
sum of two invariant subspaces Span{Li, Ls} = Span{W,, W} and Span{L3, L4} =
Span{W3, W4} by the canonical transformation of coordinate neighborhoods of C.

Proposition 6.4. Let C be a null curve of a semi-Riemannian manifold My, and F
and F* be two Frenet frames on U and U* with curvature functions {k1,K35,...,Ks}
and {K},K3,...,Kk5} and torsion functions {T1,72, 73,75} and {1}, 73,73, 75} induced
by the same screen vector bundle S(T'Ct) respectively. Suppose kiks # 0 on
UNU* # @. Then the type of Frenet equations is invariant to the coordinate
transformations.
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Proof. In the first case suppose F* = F5 or Fy and F' = F;. Then we have 77 = —]}
and 71 = 0. This means from equation (33) that A7 = AZ. Since W} and Wy are the
timlike and spacelike vector fields respectively, the first row (Al, A2,0,0) of (45(z))
is timelike vector field and the second row (A3, A2,0,0) is a spacelike vector field of
R3—1 and these vectors are perpendicular to each other. Thus, we have

(A2 —1=(A5)* +1=AlAL

From this relation we have the contradictory relation A} = Al. Hence this case is
not possible.

Conversely, if F* = F} and F' = F; or F3, then 7f = 0 and 71 = —k;. From the
equations (33) we have Al = — A2, This means that the first row (A}, 42,0,0) of
the matrix (Ag(m)) is an null vector, hence the vector field W7 is a null vector field,
thus we conclude that this case is also not possible.

In the next cases suppose

F*=F;,F=Fyand F* = F;,F = F3
respectively. From the equation (34), we have
[ k3AL + K3AL = K,
K3A? + K3A3 = K3,

'rg‘Ag + 75 Az

I

73,

| 34+ T3AL = 1.

In case F* = F§, F' = Fj, we have A = Aﬁ and
(43)? — 1= (A4})* + 1= AjA}.

From this relation we have the contradictory relation A3 = A23. Hence this case is
not possible. In another case F* = Fj, F' = F3. From the equation (41) we conclude
that this case is also not possible, which complete the proof. O

Using the Frenet equations of Type 2 and Type 3 in (15) and (26) and the method

of Lemma 1, we have the following lemmas.

Lemma 2. Let C be a null curve of a semi-Riemannian manifold My, and F and
F* be two Frenet frames of Type 2 onlUd and U* with respective curvature and torsion

functions, induced by the same screen vector bundle S(TCL). If 13 is non-zero on
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UNU* # @, then A} = A3 = 0 and at any point of U NU* we have

( dt
K} = K1D, (dt*) , T3 = T343,
K3 = KDy, K3 = K;Ci,
dt dt
* * — —_ 42
§ K = KsCth*, Kg K603dt*’ (42)
. dt . dt
K: = K7D2dt*’ Kg = KgDs—,
dt dCy dt
* - —_—
| =g DG R = medig

where
Ci=Aj—4; Cr=C143, C3=Ci4],
Dy =Al+ Al Dy,=E A}, Ds=E A}
CiDi =1, 1€ {1,2,3},
Az = Ag = 1.
Lemma 3. Let C be a null curve of a semi-Riemannian manifold My, and F and
F* be two Frenet frames of Type 8 on U and U* with respective curvature and torsion

functions, induced by the same screen vector bundle S(TCL). Then we have

f

dt
K} = K1Dy (dt*) , K3 = KDy,
dt dCh
K* = e —_ —_—
3 K3Cla K4 K4dt* +D1 dt* )
Jn:x&, n:n@w, (43)
dt
Iy = T5E2dt*’ Tg = Tﬁngdt%,
. dt dt dF;
\ T7 = T7E3dt*, T T8d + G1—— pr

where

Ei =AY - A}, E;=C1E1, E;=D\E,
Gy = A} + A3, Gy =D1G1, Gs=C1Gy,

EG; =1, i€ {1,2,3}.
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Next, let F' = {A\,N,Wy,...,W,} and F = {\,N,Wy,..., W4} be two Frenet
frames with respect to (¢, S(TC*),U) and (£, S(T'CL),U), respectively. Then the

general transformations that relate elements of F and F on U N, are
[z &

= —.—_/\
dt™’
— 1dt & oy | dE 2
N = _Ed_zzsa(c"‘) A+EN+ZCQWQ? (44)
4 a=1 a=1
— dt
Wa :ZBQ (Wg—Eg-ﬁCgA), 1<a <4,
\ B=1

where ¢, and BS are smooth functions on 4 N and the 4 x 4 matrix (B (z)) is an
element of the semi-orthogonal group O(q — 1,4 — ¢+ 1) for each z € Y NU. Then
by using (44) and the first equation of the compound Frenet equation for both F'
and F we obtain

+ d*tdt dt dt\?
h - = T h'—_ _ —_—
2ot g T en - an) (dt) ! )
dt\?
(R, 71, 0, 0) (Bg(m)) = (k1,71, 0, 0) (Zi:) .
t
The screen vector bundle transformation (44) of the form
Bl Bl o0 o
N By B3| 0 0
(B§(@)) = -
0 0 |Bj Bj
0 0 |B} Bj

is called canonical. Using above relations and the method of Proposition 6.4, we
obtain the following proposition.

Proposition 6.5. Let C be a null curve of a semi-Riemannian manifold My and F,
F be two Frenet frames with respect to (t, S(TC+),U) and (t,S(TC+),U) and their
respective curvature functions. If k1 # 0 for all t, then the type of Frenet equations
is tnwariant of the canonical screen vector bundle transformations.

The following properties of the compound Frenet equations hold:

(a) The vanishing of the first curvature 1 on a neighborhood is independent of both
the parameter transformations on C and the screen vector bundle transforma-

tions.
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(b) It is possible to find a parameter on C such that A = 0 in Frenet equations of
all possible types, using the same screen bundle,
To prove (a) we let k; = 0 (which implies that ®; = 0) on & NU. Then, there
exists a point € Y NU such that, for Type 1,
Bi(z) =-- = Bi(z) =0
and, for Type 2 and Type 3,
Bi(z) — Bj(z) = --- = Bi(z) — By(z) = 0.
This implies that the first and the second rows of the matrix (BE(x)) are linearly
dependent, which is not possible since this matrix belongs to O(qg — 1,4 — ¢ + 1).
Hence it follows from the relation of (45) that (a) holds.
To prove (b) we consider the following differential equation
2
i
dt*? dt*
whose general solution comes from
t* s
t= a/ exp (/ h*(t*)dt*) ds+b, a,b€R.
ta S0

It follows from the relation (33) that any of these solutions, with a # 0, might be

=0

taken as special parameter on C, such that h = 0. Denote one such solution by
p= -t—;—b, where t is the general parameter as defined in above equation. We call p
a distinguished parameter of C, in terms for which h = 0. It is important to note
that when t is replaced by p in the compound Frenet equations (24), the first two
equations become

d
Ve— =W +1Ws,
% dp (46)
VdiN = koW1 + k3Wa + 3W3 + oWy,
p
and the other equations remain unchanged.
In case k1 = 0, then, since 71 = 0 or 71 = —K1, the first equation of (46) takes

the following familiar form

d’z? I .
W‘Fj%::()rjk—d;-a;—o, ZE{O,...,5},

where I’jk are the Christoffel symbols of the second type induced by V. Hence C
is a null geodesic of M. The converse follows easily. Thus we have the following
theorem.
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Theorem 6.1. Let C be a null curve of a semi-Riemannian manifold My. Then

C is a null geodesic of M if and only if the first curvature k, vanishes identically
on C.

Suppose F' = {\,N,Wy,...

Wit and F = {A\,N,Wy,...

,W4} are two Frenet

frames of C with their respective screen spaces. Then, we know from Propositions
6.4 and 6.5 that they both belong to one of Type 1, Type 2 and Type 3.

Lemma 4. Let C be a null curve of My, with k1 # 0, and two Frenet frames F

and F of Type 1. Then, their curvature functions are related by

4

\

—  ds 1 [(d\ K dt
= B {fiz + hey + — 3 <d_¥> ;(Ca) — (caka + Csﬁs)gi )
o dt
= k3B2 + h Z Bfcy + Z 32 = + (c1k4 — C3Kp — cyrn) B2 — =
a=2

B Bj
-| B B
B; B;
B2 —kg
= Bg K7
Bg —Kg
Kg Bg
= | —Ky Bg
K6 Bg

dt
+(61K,5 + Cokg — C4I<.13)B§E + (62H7 + CgK,g)Bg
dt : dt
=B {B§ <ﬂ4 + I‘élﬁ@) + B3 (fis + fil'd—zC:J,) + Bik1—

dt dt dt
=B {Bg <I€4 + Kld_CQ) + B3 (K,5 + K1 dZC3> + B3K,1d_ }

kg 4
dt dB$
- = E : BxZ=2
K7 d.t_+a_2 3 i ’
Kg -
B? 4
dt dB%
3 « 2
Bi d_f+ZB4 AN
B4 a=2
Bg 4
dt dB%
3 1= B2,
Bi AP
B4 a=2

Proof. For the Type 1 it follows from (45) that

B =B} =0(i#1),

t
dt’
dt

&1

dt (%)

dt’
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Therefore the general transformations relating the elements of F and F on U NU
are given by

(— dt
Y =2
dz bl
— 1dt o oo dE !
N = -§E 61(61) A"|" aN‘l';OLWz,
| ~ - (47)
W, =B (W] + _01/\)
dt
4 dt
kW =l; Wg—-?Cg)\) a€{2,3,4}.

The relations (x) follow by straightforward calculations from the Frenet equations
of Type 1 and the use of (47). O

Theorem 6.2. Let C be a null curve of My, with a Frenet frame F of Type 1 and
a screen vector bundle S(TCL) onU C C such that k1 # 0 onU. Then there exists
a screen vector bundle S(TC) which induces another Frenet frame F of Type 1 on
U such that R4 = Rs = 0.

Proof. Define the following vector fields in terms of the elements of ' on U:

r 2 2
N =—1<"4+“5)A+N——W2——5W3,
2 K2 K1 K1

K4

Wo =Wy 4+ —A,
2 T (48)

Ws —-W3+’—€-§-)\,

K1
W, =W;, ie{l,4}

Let U* be another coordinate neighborhood with parameter t* on C such that
UNU* # @. By Lemma 1 we have the following on U NU*

( dt
K] = KZIAI (dt*) s

—

dt

* — A ,
(R TS (49)

dt

K,; = KZ5A4 dt*,

kVV{" =AW, i€ {1,2,3,4}.
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Define {N", W7, WoW3, Wy} by (48) but on U* with respect to F*, induced by
the same S(TC1) on U*. Then by using (30), (31), (48) and (49) we obtain

e dt'—

N N,
dt
W, = AW,;, i€{1,2,3,4}.

Hence there exists a vector bundle S(T'C*) spanned on U by {W,, WoW3, W, } given
by (48). Moreover, it is easy to check that this vector bundle is complementary to
TC in TC+. The null transversal vector ( constructed in Theorem 2.1), with respect
to S(TCY), is locally represented by N from (48). Finally taking into account that

t=tand
K4 K5
=-—, C3=-——
K1 K1
in the fourth and the fifth equations of Lemma 4, we obtain %4 = B = 0 which

completes the proof. O

At this point we assume that the transformations (45) are diagonal transforma-
tions, that is, they satisfy B} = B;- =0 (¢ # j). For this case, it follows from the

sixth equation of Lemma 4 that ¢4 = 0. Using this we obtain the following theorem.

Theorem 6.3. Let C be a null curve of Mgy with Frenet frame of Type 1 such
that k1 # 0. Then, there exist a lightlike 2-surface which is invariant with respect
to both the parameter transformations on C and the diagonal screen vector bundle

transformations.

Proof. Let C* be an integral curve of the vector field Wy. Since, by Lemma 4,
cq = 0 for a diagonal screen vector bundle transformation, the 2-surface S = C x
C* is always invariant with respect to this particular class of screen vector bundle
transformations. S can neither be Lorentz nor definite because its two base vectors
{¢, W4} contain a single null vector £. Therefore, S must be lightlike. This completes
the proof. U

Remark 5. Theorem 6.3 can be used to define null sectional curvature of a null vector
in My in a similar way as introduced by Beem-Ehrlich [1, p. 571] for a Lorentzian
manifold. Also see O’Neill [10, pp. 152-153 & p. 163] on null geodesic in surfaces
and lightlike particles and Harris 7] on triangle comparison theorem for Lorentz

manifolds.
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Now we consider the case when F and F are both of Type 2. Using the equations
(10) and the method of the proposition 6.2, we have the following general result
for M.

(B} = B3,
B} = B?,
B} =Bl =B!=B}=B}=B!=B}=B?=0,
! 3 1 4 2 3 2 4 (50)
" =D{L1_czd_h},
_ t
Lo =E{L2—Cld }
\ d
where
1 1 1, gl 1 1
D=B;—-By, E=B;+B;, C; =—\/3(c2—c1) and Cp = —ﬁ(cz—}-cl).

Lemma 5. Let C be a null curve of My such that k1 # 0, and two Frenet frames
F and F of Type 2. Then their curvature functions are related by

(K, =K1E(%)2,
K =E{K2+EC’1+1-l Kl(dt) Zsz C1k4+C3K7+C4K8)%}
7?3 = D{K;g + ECQ + Eld_C—'t_ -+ (Czk‘4 —c3Ks — C4K6)E—z-},
) T{_4 = {k4+K102§—; — E@}%, (51)
Ks —D{K5B3+K6B4}
Ko = D{KsB} + KoB] Z;,
K, =E{(K7+K1dEC3)B§+ (K3+K1%C4)B§}%,
| K =E{(K7+K1%03)B2 (K8+K1%C4)Bg}%.

Proof. The matrix (B; (z)), in the relations (50), is made up of two 2 x 2 matrices
(a Lorentz and an orthogonal). Therefore, using (50), the general transformations
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are given by

(— dt
A ==
&
4
— 1dt df
N = Y Si(Ci)2)\ + dtN + C1L1 + CoLg + c3W3 + ea Wy,
=t
(T, = D{Ll _ ?:ﬁ czx}, (52)
- {
I, = E{Lg -Z clx},
— s dt
. = ZBQ(Wﬁ - —ECg)\)
\ p=3

Straightforward calculations from above relations and the use of (15) implies (51),
which proves this lemma. O

By a procedure same as for the Theorem 6.2, one can prove the following:

Theorem 6.4. Let C be a null curve of M, with screen bundle space S(TCL) and
a Frenet frame F of Type 2 such that k1 # 0 onU. Then there exists a screen vector
bundle S(TC1) which induces another Frenet frame F onlU such that K7 = Kg = 0
onlU.

Next we consider the case when F and F are both of Type 3. Using the equations
(24), we have the following general result for M.

( dt
_ﬁx,

>

— ldt df :
N =-5=> &)+ o N+an @

I, = {L1 02 o =k 59

b - 5{t- o).

1 -oft-ci).

L, =H{L - ngt 0},

where
D =B'-Bl, E =B!+Bl, G =B3-B}, H =B}+B}
Cr = glea—a), Cr=pleata), C3=flca—cs), Ci=Jslcatcs).
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By the procedure same as for the Lemma 5, one can prove the following:

Lemma 6. Let C be a null curve of My such that k1 # 0, and two Frenet frames
F and F of Type 3. Then the functions G and H are constant and their curvature

functions are related by

( dt
K = KlE(dt)
— dCi K; dt
K> —E{K2+h01+ﬁ—7(—) Z&(Cz)z (C1K4+03K7+C4K6)d }
= — dC, dt
K3 = D{Kg + hCy + 7 + (CoKy4 — C3T5)d_}
Ty = H{T3 +hC3+ £ + (C1Ty + CoTs + Cng)—-—-}
dt dt
dC dt
0 = hC4 -+ —d—4 + (01T5 + CoT7 — C4Tg)d
— dt dDy dt
- - —4+pBp—=1l= 54
Ky = {Ki- KiCr + B 1=, (54)
Ty = DHT4§.E,
_ dt
Ty = DGTsd'f’
_ dt
Te —E{T6+K103d_}HZ§,
_ dty _dt
T, =EB{T - K104dt}Gd_
dt
\Tg = ngt

By the method of Theorem 6.2 and 6.4, one can prove the following:

Theorem 6.5. Let C be a null curve of My with screen bundle space S(TC*) and
a Frenet frame F of Type 3 such that k1 # 0 onlUd. Then there exists a screen vector
bundle S(T'CL) which induces another Frenet frame F on U such that Tg =T7 = 0
onlU.

7. CONCLUDING REMARK

In this paper we have shown that it is possible to find general compound Frenet
equations (24), with a variety of Frenet frames of Types 1, 2 and 3, for a null
curve in a 6-dimensional semi-Riemannian manifold of index ¢. This is only a step
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further of the earlier work of Duggal & Bejancu [4] on null curves of Lorentzian
manifolds and of Duggal & Jin [5] on null curves of semi-Riemannian manifolds of
index 2. However, the general case of null curves in semi-Riemannian manifolds of
arbitrary dimension is still an open problem. We guess that this case is much more
complicated and the null curve have min{g,m + 2 — ¢}-type Frenet equations. We
hope that the publication of this paper will help in solving the general case.
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