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COMMON FIXED POINT THEOREMS FOR
WEAKLY COMPATIBLE MAPPINGS
WITHOUT CONTINUITY IN MENGER SPACES

SUSHIL SHARMA AND BHAVANA DESHPANDE

ABSTRACT. The aim of this paper is to prove some common fixed point theorems
for the class of compatible maps to larger class of weakly compatible maps without
appeal to continuity in Menger spaces and we also give a set of alternative conditions
in place of completeness of the space. We improve and extend the results of Dedeic
& Sarapa [A common fixed point theorem for three mappings on Menger spaces.
Math. Japon. 34 (1989), no. 6, 919-923] and Rashwan & Hedar [On common fixed
point theorems of compatible mappings in Menger spaces. Demonstratio Math. 31
(1998), no. 3, 537-546).

1. INTRODUCTION

Jungck [7] proved a common fixed point theorem for commuting maps gener-
alizing the Banach’s fixed point theorem. Banach fixed point theorem has many
applications but suffers from one draw back, the definition requires continuity of the
function. There then follows a flood of papers involving contractive definition that
do not require the continuity of the function. This result was further generalized
and extended in various ways by many authors.

Sessa [19] defined weak commutativity and proved common fixed point theorem
for weakly commuting mappings. Further, Jungck [8] introduced more generalized
commutativity, so called compatibility, which is more general than that of weak
commutativity. Since then various fixed point theorems for compatible mappings
satisfying contractive type conditions and assuming continuity of at least one of the
mappings in the compatible pair, have been obtained by many authors in different
spaces.
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It has been known from the paper of Kannan [10] that there exists maps that
have a discontinuity in the domain but which has a fixed point. Moreover the maps
involved in every case were continuous at the fixed point.

In 1998, Jungck & Rhoades [9] introduced the notion of weakly compatible maps
and showed that compatible maps are weakly compatible but converse need not be
true.

Recently, Singh & Mishra [21] and Chugh & Kumar [3] proved some interesting
results in metric spaces for weakly compatible maps without assuming any mapping
continuous.

Menger [11] introduced the notion of probabilistic metric spaces, which is gener-
alization of metric space, and the study of these spaces was expanded rapidly with
the pioneering work of Schweizer & Sklar [17, 18]. The theory of probabilistic metric
spaces is of fundamental importance in probabilistic functional analysis.

The existence of fixed points for compatible mappings on probabilistic metric
spaces is shown by Mishra [12]

Recently, fixed point theorems in Menger spaces have been proved by many au-
thors including Bylka (1], Pathak, Kang & Baek [13], Stojakovic [22, 23, 24], Hadzic
[5, 6], Dedeic & Sarapa [4], Rashwan & Hedar [16], Mishra [12], Radu [14, 15}, Sehgal
& Bhaucha-Reid [20] and Cho, Murthy & Stojakovic [2].

In this paper, we prove some common fixed point theorems for weakly compatible
mappings in Menger spaces without using the condition of continuity. We also give
a set of alternative conditions in place of completeness of the space. We improve
results of Dedeic & Sarapa [4] and Rashwan & Hedar [16].

2. PRELIMINARIES

Let R denote the set of reals and Rt the non-negative reals. A mapping
F:R—R"

is called a distribution function if it is non-decreasing and left continuous with inf
F =0 and sup F = 1. We will denote by L the set of all distribution functions. A
probabilistic metric space is a pair (X, F'), where X is a non empty set and F is a
mapping from X x X to L.

For (u,v) € X x X, the distribution function F(u,v) is denoted by F,,. The
functions F, , are assumed to satisfy the following conditions:
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(P1) Fyu(z) =1 for every z > 0 if and only if u = v.

(Pg) Fy,(0) =0 for all u,v € X.

(P3) Fyu(z) = F,u(z) for every u,v € X.

(Py) If FU,,(:I:) =1land F, ,(y) =1, then F, ,(z+y) =1 for all u,v,w € X and

z,y > 0.

In a metric space (X, d), the metric d induces a mapping F : X X X — L such
that
F(u,v)(z) = Fuo(z) = H(z — d(u,v)).

For every u,v € X and z € R, where H is a distribution function defined by

H(x):{o, <0

1, z>0.

Definition 2.1. A function ¢ : [0,1] x [0,1] — [0,1] is called T-norm if it satisfies
the following conditions:
(t1) t(a,1) = a for every a € [0, 1] and £(0,0) = 0.
(t2) t(a,b) = t(b,a) for all a,b € [0,1].
(ts) If ¢ > a and d > b, then t(c,d) > t(a,b).
(ts) t(t(a,b),c) = t(a,t(b,c)) for all a,b,c € [0,1].

The concept of neighbourhood in PM-spaces was introduced by Schweizer &
Sklar [17].

Definition 2.2. A Menger space is a triple (X, F,t), where (X, F) is a PM-space
and ¢ is a T-norm with the following condition:

(P5) Fuu(z+y) > t(Fuuw(), Fuu(y)) for all u,v,w € X and z,y € R™.
Ifwe X,e >0and A € (0,1), then an (g, A)-neighbourhood of u, denoted by
Uu(g, A), is defined by
Uu(e, \) ={v e X : F,,(e) >1 - A}
If (X, F,t) is a Menger space with the continuous T-norm ¢, then the family
{Uu(e, V) :ue X, e>0, Ae(0,1)}
of neighbourhoods induces a Hausdorff topology on X and if sup,; t(a,a) = 1, it

is metrizable.
An important T-norm is the T-norm defined by

t(a,b) = min{a, b}, for all a,b€ [0,1]
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and this is the unique T-norm such that
t(a,a) > a, forevery a € [0,1].
Indeed if it satisfies this condition, we have
min{a, b} < t(min{a, b}, min{a, b}) < t(a,b) < t(min{a, b}, 1) = min{a, b}.
Therefore, t(a,b) = min{a, b}.

In the sequel, we need the following definitions due to Radu [14].

Definition 2.3. Let (X, F,t) be a Menger space with continuous T-norm t. A
sequence {z,} of points in X is said to be convergent to a point x € X if for every
e>0

lim Fp, .(e) =1.

n—oo

Definition 2.4. Let (X, F,t) be a Menger space with continuous T-norm ¢. A
sequence {z,} of points in X is said to be Cauchy sequence if for every € > 0 and
A > 0, there exists an integer N = N(g, A) > 0 such that

Frpon(e)>1—=X, forallm,n>N.

Definition 2.5. A Menger space (X, F,t) with the continuous 7T-norm ¢ is said to

be complete if every Cauchy sequence in X converges to a point in X.

Theorem 2.1 (Schweizer & Sklar [17]). Let t be a T-norm defined by
t(a,b) = min{a, b}.

Then the induced Menger space (X, F,t) is complete if a metric space (X,d) is

complete.

Definition 2.6 (Jungck & Rhoades [9]). Two maps A and B are said to be weakly
compatible if they commute at a coincidence point.

Fzample 2.1. Define A, S : [0,3] — [0, 3] by

_Jz ifzel0,1), _)3-=z ifze0,1),
A(m)_{3 if z € [1,3]; S(“’)_{3 if z € [1,3].

Then for any z € [1,3], ASz = SAz, showing that A and S are weakly compatible
maps on [0, 3].
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Example 2.2. Let X = R and define 4,5 : R - R by Az = z/3,z € R and
Sz = 2%,z € R. Hence 0 and 1/3 are two coincidence points for the maps A and
S. Note that A and S commute at 0, i.e., AS(0) = SA(0) = 0, but AS(1/3) =
A(1/9) = 1/27 and SA(1/3) = S(1/9) = 1/81 and so A and S are not weakly

compatible maps on R.

Remark 2.1. Weakly compatible maps need not be compatible. Let X = [2,20] and
d be the usual metric on X. Define mappings 4,5 : X — X by

o= 9 55 T if x =2,
Az =17 Tx_ orT =29, Sr=1<12 if2<x<5,
6 if2<ax<5; .
z—3 ifz>5.

The mappings A and S are non-compatible consider the sequence {z,} defined by
Zp =5+ (1/n),n > 1. Then

lim Sz, =2, lim Az, =2, lim SAz, =2 and lim ASz, = 6.

n—oo n—o0 n—0o0 n—oo .

But they are weakly compatible since they commute at a coincidence point at z = 2.

3. MAIN RESULTS

Theorem 3.1. Let A,B,S and T be self mappings on a Menger space (X, F,t)
where t is continuous and t(z,z) > x for all x € [0,1], satisfying the conditions:

(3.1) A(X) CT(X) and B(X) C S(X),
(3.2) There exists k € (0,1) such that
Fay,Bo(kz) > t(FAu,Su(x)a t(FBoo(2), t(Faurv(az), Fay su(27 — ax))))
forallu,ve X,z >0 and a € (0,2).
If
(3.3) one of A(X),B(X),S(X) and T(X) is a complete subspace of X,
then

(i) A and S have a coincidence point, and
(i) B and T have a coincidence point.

Further if
(3.4) the pairs {A, S} and {B,T} are weakly compatible,
then
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(iii) A, B, S and T have a unique fired point in X.
We need the following lemma proved by Mishra [12] for our first result.

Lemma 3.1. Let A,B,S and T be self mappings of the Menger space (X, F,t),
where t 1s continuous and t(x,z) > z for all z € [0,1], satisfying the conditions
(3.1) and (3.2). Then the sequence {y,} defined by condition (3.4) is a Cauchy

sequence in X.

Proof of Theorem 3.1. Since A(X) C T(X), for any xzyp € X, there exists a point
z1 € X such that Azg = T'z;. Since B(X) C S(X), for this point z;, we can
choose a point zo € X such that Bx, = Szo and so on. Inductively, we can define
a sequence {y,} in X such that
(3.5) yon = Azon = TZont1 and Yont1 = BTopy1 = STopye, forn=1,2,...

Let {yn} be the sequence in X defined above. By using Lemma 3.1, {y,} is a
Cauchy sequence in X.

Now suppose that S(X) is complete. Note that the subsequence {y2n+1} is con-
tained in S(X) and has a limit 2z in S(X). Let p € S~'z. Then Sp = 2.

We shall use the fact that the subsequence {y2,} also converges to z. By (3.2),
we have

Fap,Bzont (kz)
> t(FAp,Sp(w)y t(FBx2n+1,T:tzn+1 (m)v t(FAp,Tzzn+1 (ax), FBz2n+1,Sp(2x - O‘m))))
Taking n — o0 and a — 1, we have
Fap (k) 2 t(Fiap(2), (P (@), HFps(2), Fo(a)))
> F Ap,z (:L'),
which means that Ap = 2. Hence Ap = Sp = 2, i. e., p is a coincidence point of A
and S. This proves (i).
Since A(X) C T(X), Ap = z implies that z € T(X). Let ¢ € T~'2. Then Tq = z.
It can easily verified by using similar arguments of the previous part of the proof
that Bq = z. This proves (ii).
If we assume that T'(X) is complete, then argument analogous to the previous
completeness argument establishes (i) and (ii).
The remaining two cases pertain essentially to the previous cases. Indeed, if
B(X) is complete, then by condition (3.1), z € B(X) € S(X). Similarly if A(X) is
complete the z € A(X) C T(X). Thus (i) and (ii) are completely established.
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Now, we assume that condition (3.4) holds. Since the pair {A, S} is weakly
compatible therefore A and S commute at their coincidence point. . e., ASp = SAp
or Az = Sz. Similarly BTq=TBq or Bz =Tx.

Now, we prove that Az = 2. By (3.2), we have

FAP»BII«‘an (kl‘)

2> t(FAZ,Sz(x)v t(FB$2n+1,Tﬂc2n+1 (33)’ t(FAz,TZ2n+1 (am)’ F322n+1,SZ(2x - ax))))

Taking n — oo and a — 1, we have

FAz,z(kx) > t(FAz,z(x)a t(Fz,z(x)> t(FAz,z(x)a Fz,Az(x)))) > FAz,z (-T)

Therefore Az = z. Hence Az = z = S=z.

Similarly, we have Bz = z = T'z. This means that z is a common fixed point of
mappings A, B, S and T.

For uniqueness of common fixed point let w # z be another fixed point of map-
pings A, B, Sand T.

Then by condition (3.2) and taking oo — 1, we have

Fow(kz) > t(Fy 2(z), t(Fow(@), t(Fow(T), Fu:(2)))) = Fuw(),

which means that z = w. This completes the proof. |

Remark 3.1. We note that Theorem 3.1 is still true if we replace the condition (3.2)
by the following condition:

(3.6) there exists k£ € (0,1) such that

Fu,Bv(kz) > min {Fay,su(2), Fpo,ro(2), Fau1vo(0T), FBy 50(20 — az) }
for all w,v € X, z > 0 and a € (0,2).
Theorem 3.2. Let A, B, S and T be self mappings on a Menger space (X, F\t),

where t is continuous and t(z,z) > x for all x € [0, 1], satisfying the conditions (3.1),
(3.3), (34) and

(3.7) there exists k € (0,1) such that
FAu,Bv(kx) > min{FAu,Su(w), FBU,T‘U(x)a FSu,TU(x)}3 ‘
for allu,v e X,z > 0.

Then all the conclusions of Theorem 3.1 are true.
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Proof. If the condition (3.7) is satisfied, then for any « € (0,2), we have on the lines
of Dedeic & Sarapa [4]

FAu,Bv(km) > min{FAu,Su(x)a FBU,TU(x)) FSu,Tv(m)}’
> min{FAu,Su(m), FBU,T‘U(x)a FAu,Tv(m)a FBU,Su(zm - O[.’B)}
Then using the Remark 3.1, the Theorem 3.2 is still true. a

The metric version of Theorem 3.1 is as follows:

Theorem 3.3. Let A, B, S and T' be self mappings on a metric space (X,d) satis-

fying the following conditions:

(3.8) A(X) Cc T(X) and B(X) C S(X),

(3.9) d(Az, By) < max {d(Aa:, Sz),d(By, Ty), d(Sz, Ty), 1 [d(Az, Ty)+d(Sy, By)]}
forall z,y € X.

If

(3.10) One of A(X), B(X), S(X) or T(X) is a complete subspace of X,

then

(i) A and S have a coincidence point, and

(ii) B and T have a coincidence point.
Further if

(3.11) the pairs {A, S} and {B,T} are weakly compatible,
then

(iii) A, B, S and T have a unique fized point in X.

Remark 3.2.

(i) Theorem 3.1 improves result of Rashwan & Hedar [16].

(ii) Theorem 3.2 improves and extends the main result of Dedeic & Sarapa [4].

Following Bylka [1], we consider the family G of functions g : [0,00) — [0, c0)

such that
(3.12) g is non-decreasing in [0, 00), and
(3:13) limp—o0 g"(2) = 00, for every z > 0, where g" denotes the n-th iteration of g.
Theorem 3.4. Let A, B, S and T be self mappings on a Menger space (X, F,t)

where t is continuous and t(x,z) >  for all x € [0,1], satisfying the following

conditions:
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(3.14) A(X) C T(X) and B(X) C S(X).
(3.15) There ezists a function g € G such that
FAu,Bv(w) > FSu,Tv(Q(l’)),
for allu,v € X, z >0 and a € (0,2).
(3.16) One of A(X), B(X), S(X) or T(X) is a complete subspace of X.
Then

(i) A and S have a coincidence point, and
(ii) B and T have a coincidence point.

Further if

(3.17) the pairs {A,S} and {B,T} are weakly compatible,
then

(iii) A, B, S and T have a unique fized point in X.

In order to prove the theorem we need the following lemma due to Rashwan &

Hedar [16].

Lemma 3.2. Let g € G, such that
(i) g(z) > x for all z >0, and
(i) Fuu(z) > Fuu(g(z)) for some z >0,

then u = v.

Proof of Theorem 3.4. Let {y,} be the sequence in X defined by (3.5). Then for
alz>0,n=1,2,..., we have
Fypnirvon2 (%) = FAgon2,Baons (T)
> FSupni2Tronsr (9(2))
= Fypp yansa (9(2))-
Similarly, we have

Fyzn,y2n+1 (z) = FAZZn,Bzznﬂ ()

Z Fsz2nyTz2n+1 (g(x))
= FyZn—l sY2n (g(m)) :

Therefore

(3.18) Fynyni1 (T) 2 Fyp1,ym (g(l'))

v

w2 Fyoan (gn(w))
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Now, we show that the sequence {y,} is a Cauchy sequence in X. Let &, A be
positive reals. Then for m > n and £ = m — n and by using (3.18), we have

(3.19) Fypym(€) 2 t(Fynynsr (6/9)s Fynirym (€(€ = 1)/2))
2 (Fyon (9°(E/0): Finrin (€€ = 1)/0))
(Fyo Y1 ( €/€ ( Yn+1,Un+2 (5/6)) Yn+2,Ym (E(e 2)/6)))
> t(Fyon (9(6/0), {Fyon (" (€/0)); Fumyam (€~ 2)/2))))
(

2t t(Fyo,w "(e/), ( yo,y1(9n+1(5/£))): Fyn+2,ym(5(€_2)/€))>-

Since limy, .00 g"(z) = oo, we have ¢g"(e/€) < g™*"!(e/¢) and by the hypothesis
t(a,a) > a. Then from the last in equality of (3.19) we obtain

(3.20) Py m (©) > t(Fyo s (6(6/0), Py (£ = 2)/0)).

Using the induction argument we obtain from (3.20) that

Fyn»ym(s) Z t(Fyo,yl( ({-:/E) ( Untk—2-Untk— 1(5/@ Ym— 1,ym(€/6)))>

2 t(Fyoan (97 (€/0) tFunan (0" 2(6/0), Fioan (97 (/0))) )
> Fyo (67(6/0).
Hence, we can choose N < n such that
Froan (9"(6/0) > 1= X,

and then Fy, .. () >1—Aforallm>n2>N.

This means that {y,} is a Cauchy sequence in X. Now suppose that S(X) is
complete. Note that the subsequence {yon+1} is contained in S(X) and has a limit
zin S(X). Let p € S~12z. Then Sp = z. We shall use the fact that the subsequence
{y2n} also converges to z. By (3.15), we have

FAP,Bzan (z) 2 FSP,T$2n+1 (g.’E)

Taking n — oo, we have

Fap(z) > Fy.(g2) = 1,

which implies that Ap = z. Hence Ap = Sp, ¢. e., p is a coincidence point of A and
S. This proves (i). Since A(X) C T(X), Ap = z implies that z € T(X).
Let ¢ € Tz, Then Tq = z. It can easily verified by using similar arguments of

the previous part of the proof that Bq = 2.
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If we assume that T°(X) is complete, then argument analogous to the previous
completeness argument establishes (i) and (ii). The remaining two cases pertain
essentially to the previous cases. Indeed, if B(X) is complete, then by (3.14), z €
B(X) C S(X).

Similarly if A(X) is complete then z € A(X) C T(X). Thus (i) and (ii) are
completely established.

Since the pair {4, S} is weakly compatible therefore A and S commute at their
coincidence point, i. e., ASp = SAp or Az = Sz. Similarly BTq = TBqor Bz =Txz.

By (3.15), we have

FAZ,y2n+1 (:E) = FAZ,BZan (g(:E)) > FSz,Tz2n+1 (g(.’L‘))

Taking n — oo, we have

Faz:(2) > Fasz,x(9())-

By Lemma 3.2, we have Az = z. Therefore Az = z = Sz. Similarly, we have
Bz = z = Tz. This means that z is a common fixed point of A, B, S and T. It
follows easily from (3.15) that z is a unique common fixed point of 4, B, S and T.
This completes the proof. O
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