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t-INTUITIONISTIC FUZZY SUBGROUPOIDS

HeEe WonN KaANG, KuL HUR, AND JANG HYUN Ryou

ABSTRACT. In this paper, we introduce the concepts of t-intuitionistic fuzzy prod-
ucts and t-intuitionistic fuzzy subgroupoids. And we study some properties of t-
products and t-subgroupoids.

0. INTRODUCTION

In 1965, Zadeh [15] introduced the concept of fuzzy sets. After that time, several
researchers Anthony & Sherwood [1], Liu [10], Rosenfeld [11], Sessa [13] have applied
the notion of fuzzy sets to group theory. Moreover, Anthony & Sherwood [1] intro-
duced the concept of ¢-fuzzy subgroups by using the ¢{-norm introduced by Schweizer
& Sklar [12].

In 1986, Atanassov [2] introduced the concept of intuitionistic fuzzy sets. Re-
cently, Coker [5], Coker & Eg [6], Giirgay, Coker & Eg [7], Lee & Lee [9] introduced
the concept of intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets.
In 1989, Biswas [4] introduced the concept of intuitionistic fuzzy subgroups and
investigated some of it’s properties. In 2003, Banerjee & Basnet [3] studied intu-
itionistic fuzzy subrings and ideals using intuitionistic fuzzy sets. Also Hur, Jang &
Kang [8] applied the notion of intuitionistic fuzzy sets to groupoid theory.

In this paper, we introduce the concepts of t-intuitionistic fuzzy products and
t-intuitionistic fuzzy subgroupoids by using the t-norm. And we investigate some
properties of t-products and t-subgroupoids.
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1. PRELIMINARIES

We will list some concepts and results needed in the later sections.

Definition 1.1 (Atanassov [2]). Let X be a nonempty set. An intuitionistic fuzzy
set (in short, IFS) on X is an object having the form

A= {(z,pa(z),va(z)) : T € X}
where the functions g : X — I and v4 : X — I denoted the degree of membership
(namely pa(z)) and the degree of nonmembership (namely v4(z)) of each z € X to
A, respectively, and 0 < pa(z) + va(z) <1 for each z € X.

For the sake of simplicity, we shall use the symbol A = (x, uag,v4) or A = (a,v4)
for the IFS A = {(z, ua(z),va(z)) : z € X} (see, Atanassov [2]).
We will denote the set of all the IFSs in X as IFS(X).

Definition 1.2 (Atanassov [2]). Let X be a nonempty set and let A = (p4,v4) and
B = (up,vB) be IFSs on X. Then
(1) Ac Bifandallif ugy < pup and v4 > vg.
(2) A=Bifand allif AC B and B C A.
3) A€ = (I/A,,U,A).
) ANB= (MAA;LB,VAVVB).
5) AUB = (pa V uB,va AvB).
6) [1A = (na,1~pa), (JA=(1-va,va)

Definition 1.3 (Coker [5]). Let {A;}ics be an arbitrary family of IFSs in X, where
A; = (pa,,va,) for each i € J. Then

(a) N4 = (/\MA,-»\/VAJ-
(b) UAZ = (Vlu’Ai?/\UAi)'

Definition 1.4 (Goker [5]). 0~ = (0,1) and 1. = (1,0).

Result 1.1 (Corollary 2.8 in Goker [5]). Let 4, B,C, D be IFSs in X. Then

(1) ACBandCCD=AUCCBUDand ANCCBND.
(2 AcCBand AcC=AcCBnC.

83y ACBand BCC=AUBCC.

(4 AcBand BCC=ACC.

(5) (AUB)® = A°NB° (AN B)° = A°U B°.
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(6) AC B = B° C A°.
(7) (A9)° = A.
(8) 16, =0, 05 = 1..

Definition 1.5 (Hur, Jang & Kang [8]). Let X and Y be nonempty sets and let
f:X — Y amapping. Let A = (pa,v4) be an IFS in X and B = (up,vp) be an
IFS on Y. Then

(a) The preimage of B under f, denoted by f~1(B), is the IFS in X defined by:
FHB) = (f(us), f(vB)),

where f~H(up) = pupo f.
(b) The image of A under f, denoted by f(A), is the IFS in Y defined by:

F(A) = (f(na), f-(va)),

where for each y € Y

pa(z) if f~l(y) # 2,
flrea)(y) =  eef-1@)
0 if ffly)=2

and
A val@) i @) #9,
f-(wa)(y) =  =ef1w)
0 if f(y)=2.
Definition 1.6 (S. J. Lee & E. P. Lee [9]). Let A,u € (0,1] and A+ < 1. An
intuitionistic fuzzy point (in short, IFP) x(y ,y of X is the IFS in X defined by
A)¥) = (0,1) if y#azforeachyeY.
In this case, z is called the support of () ,) and A and p are called the value and
nonvalue of z(, ), respectively.

An IFP T(x ) 18 said to belong toan IFS A = (u4,v4) in X, denoted by () € A,
if A < pa(z) and p > va(z).

We will denote the set of all I[FPs of X as IFp(X).

Result 1.2 (Theorem 2.4 in S. J. Lee & E. P. Lee [9]). Let A = (ua,v4) be an IFS
in X. Then

A= Heoum L0 € 4}



236 Hee WoN KaNG, KuL Hur, AND JANG HYUN Ryou

Definition 1.7 (Hur, Jang & Kang [8]). Let (X,-) be a groupoid and let A, B €
IFS(X). Then the intuitionistic fuzzy product of A and B, A o B, is defined as
follows: for any z € X,

\ [kaW) Aus(z)] foreach (y,2) € X x X with yz =gz,

,U,AOB(:L‘) = Yyz==x
0 for each (y,2) € X x X with yz # =z
and
/\ [va(y) Vvp(z)] foreach (y,z) € X x X with yz =z,
VAoB(x) =\ Y=z

1 for each (y,2) € X x X with yz # z.

Definition 1.8 (Hur, Jang & Kang [8]). Let (G, -) be a groupoid and let 0., # A €
IFS(G). Then A is called an intuitionistic fuzzy subgroupoid in G(in short, IFGP in
G)if Ao AC A

Definition 1.8’ (Hur, Jang & Kang [8]). Let (G,-) be a groupoid and let A €
IFS(X). Then A is called an intuitionistic fuzzy subgroupoid (in short, IFGP) of G
if for any 7,y € G, pa(wy) > pa(z) A pa(y) and va(zy) < va(@) V va®).

It is clear that 0., and 1. are both IFGPs of G.

We will denote the set of all IFGPs of G as IFGP(G).

Definition 1.9 (Schweizer & Sklar [12]). A t-norm is a mapping t : [ x I — [
satisfying the following conditions: for any z,y, z,u,v € I,

(i) t(z,y) = t(y,z), i e., xty = ytz.

(il) zt(ytz) = (xty)tz.

(iii) If z < w and y < v, then zty < utv.
In particular, if y < v, then zty < ztv.

(iv) ztl = z and xt0 = 0.

t-norms which are frequently encountered are:

(a) ztoy = min{z,y} for z,y € I.

(a) ztyy = Prod{z,y} = zy for z,y € I.

(a) ztoy = max{z +y — 1,0} for z,y € I.

Definition 1.10 (Schweizer & Sklar [12]). A t-conorm or s-norm is a mapping
sy : I x I — I defined by: for any u,v € [,us;v =1 — (1 — u)t(l —v).
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It is clear that s; satisfies the following conditions: for any z,y, z,u,v € I,

(i) zsy = ysi.
(ii) zst(ysiz) = (xsiy)st2.
(ii) If £ < u and y < v, then zs;y < us;v.

In particular, if y < v, then zs;y < zsv.
(iv) zs0 = z and zs;1 = 1.
t-conorms corresponding to the above t-conorms £y, t1,t are as follows:

(a') zspy = max{z,y} for any z,y € I.
(b') zs1y =z +y— zy for any z,y € I.
(¢} zsoy = min{l,z + y} for any z,y € I.

2. t-INTUITIONISTIC FUZZY PRODUCTS

In this paper, X always denotes a nonempty set and s; denotes the dual of ¢-
norm ¢.

Definition 2.1. Let (X, ) be a groupoid and let A, B € IFS(X). Then the intu-
itionistic fuzzy product of A and B under t-norm t (in short, t-intuitionistic fuzzy
product of A and B), Ao, B, is defined as follows: for any z € X,

\/ [pa(y)tup(z)] for each (y,z) € X x X with yz =z,
PaoB(T) = { yz=¢
0 for each (y,2) € X x X with yz #z

and

/\ [va(y)siwp(2)] for each (y,2) € X x X with yz =z,
VAotB(iB) = { yz=z
1 for each (y,2) € X x X with yz # z.

It is clear that A oy B € IFS(X), i. e., (IFS(X), o;) is groupoid.
Proposition 2.2. Let “o;” be as above, let T(4 4, Y(a',p) € IFp(X) and let A,B €
IFS(X). Then:

(1) Z(a,8) ©t Y(o,8) = (TY)(ata’,Bs.87)-
(ii) A Ot B = Uz(a’ﬁ)eA, y(a’,B')eB m(axﬂ) Ot y(a',ﬁ’)'
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Proof. (1) Let z € X. Then:
Hz (o gy0ty (ot g (2)

\/ [F‘z(a,p) (ml)tﬂy(a/,ﬁ/)(yl)] for each (2',y') € X x X with 'y’ = 2,

= T'y' =2

0 for each (z/,y') € X x X with z'y’ # z,
_ Jatd ifzy =g,
- 0 otherwise,

and
VI(Q.ﬁ)oty(a',ﬁ’) (Z)

/\ L2 (a:')stl/y(a,_ﬁ,)(y’)] for each (z',y') € X x X with z'y/ = 2,

= m’ylzz

0 for each (z/,y') € X x X with 2y # z,
) Bsif if zy =2,
B 1 otherwise.

Hence :U(a’ﬂ) Oy Yo' g) = (my)(ata’,ﬂstﬁ’)'
(2) Let w € X and we may assume that there exist u,v € X such that uv = w
and pa(u) > 0,v4(u) # 1, up(v) > 0,v5(v) # 1 without loss of generality. Then:

paoB(w) = \/ [pa(w)tps ()]
uv=w
> \/ V Ko ) (W)Ehy g 51, (V)] (t is increasing on I)
uv:wz(a,ﬁ)eA,y(a/’ﬂ/)eB
= po(w), (1)
where
C= U T(e) Ot Y(o 8-

T(e,8) €AY (o 1) EB
SInce Uy, (u)va()) € 4 a0d V(ug(v)vp(v)) € B,

po(w) = V \/ Kooy (W)thy o g1y (V)]

T(a,B8) GA,y(a,’ﬁ,) cB uv=w

= \/ ( \/ [/a'l:z(ayﬁ) (u)t,uy(a,,ﬁ,) (U)])

uv=w z(a,ﬂ)€A7y(a',B’)eB

2 \/ [“u<uA(u),uA<u))(u)t“v(ngm,m(v»(”)]

uv=w

=V [ka@)tus()]

uv—=w
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= k4o, B(W).
Thus @40, = pe. On the other hand:

Vao,B(w) = /\ [va(u)s:vp(v)]

uv=w
< /\ [Ve (o (W) StVy g o1y (V)] (5t is increasing on )
uv:w,m(a,g)eA,y(a/'ﬁl)EB
= vc(w)
and
VC (w) = A A [Va:(a,ﬁ) (u)st’/y(a:ﬁ/) (v)]

T(a,B) EAay(al‘Bl) eBuv=w

= N A Vo0, (W)StVy 0101y (V)])

uv=w z(a,g)EA,y(alﬁl)GB

s /\ [VU(uA(u),uA(u)) (u)stV”(MA(v),vA(v)) (v)]

uwy=w

= N\ alw)sws ()]

uv=w

= l/AotB('w).

Thus v4.,B = v¢. Hence

Aot B = U Z(a,B) Ct Y(o',B')
$(a’5)€A,y(aI,ﬂ)€B

0O

Remark 2.1. Proposition 2.2 is the generalization of Proposition 2.2 in Hur, Jang &
Kang [8]:
(1) w(avﬁ) °© y(alaﬁl) = (my)(a/\a’,ﬁ\/ﬁ’)'
(2) A © B = U:C(a]ﬁ)GA,y(al’ﬁ)EB m(a)ﬂ) o y(al»ﬁl)'
The following is the immediate result of Definition 2.1.

Proposition 2.3. Let (X, ) be a groupoid and let “o;” be as above.

(1) If “-” is associative [resp. commutative] in X, then so is “o¢” in IFS(X).
(2) If “-” is commutative in X, then so is “o,” in IFS(X).
(8) If “+” has a unity e € X, then e(10y € IFp(X) is a unity of “o¢” in IFS(X),

i.e., Aoten g = A=eng)ot A for each A € IFS(X).
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Remark 2.2. Proposition 2.3 is generalization of Hur, Jang & Kang [8, Proposition

2.3]: Let (X, ) be a groupoid.

(1) If “-” is associative [resp. commutative] in X, then so is “o” in IFS(X).

(2) If “-” has a unity e € X, then e(; g) € IFp(X) is a unity of “o” in IFS(X), i.e.,
Aoce) =A=c¢eq oA foreach 4 € IFS(X).

3. t-INTUITIONISTIC FUZZY SUBGROUPOIDS

Definition 3.1. Let (X,-) be a groupoid and let 0., # A € IFS(X). Then A is
called an intuitionistic fuzzy subgroupoid in X under a t-norm t (in short, t-IFGP
in X)if Aoy AC A.

It is clear that 0. and 1. are both ¢-IFGPs in X.

The followings are the immediate results of Definition 2.1 and Definition 3.1.

Proposition 3.2. Let (X,-) be a groupoid and let 0. # A € IFS(X). Then the
followings are equivalent:

(1) A is a t-IFGP in X.

(2) For any T(a,p), Y(ar,8') € 4 T(a,8) Ot Y(a',p) € A, 1.€., (A, 01) is a groupoid.

(3) For any z,y € X, ua(zy) 2 pa(x)tualy) and va(zy) < va(z)swwa(y).

Remark 3.1. Proposition 3.2 is a generalization of Hur, Jang & Kang [8, Proposition
3.2]:

(1) Ais an IFGP in X.

(2) For any (48, Y(a',8") € 4y T(a,8) © Y(o',8) € 4, i. €, (A,0) is a groupoid.

(3) For any ,y € X, pa(zy) > pa(z) A paly) and va(zy) < va(z) Vva(y).

Proposition 3.3. Let A be a t-IFGP in a groupoid (X, -).

(1) If “” is associative in X, then so is “o;”

in A, i.e., for any T4 8), Y(a',8') Z(a",8")
€ A, (T(a,p) Ot Y(a',8)) Ot Z(a f) = T(a,B) Ot (Y(ar,67) Ot Z(a,B1))-

(2) If -7 is commutative in X, then so is “oy” in A, i.e., for any T(s gy, Y(r g1y €
A, Z(a,8) ©t Y(o!,8) = Y(o ") Ot T(a,8)

(3) If -7 has a unity e € X, then e(10) 0 T(a,8) = T(a,8) = T(a,8) Ot €(1,0) fOT each

T(a,p) € A-

Remark 3.2. Proposition 3.3 is the generalization of Hur, Jang & Kang [8, Proposi-
tion 3.3]:
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(1) If “.” is associative in X, then so is “o” in A, i. e., for any (4 ), Y(a,8')> Z(a",8")
in A, (2(a,p) © Yo 1)) © Z(a,8") = T(a) © W(ar 1) © Z(a",6))-

(2) If - is commutative in X, then so is “o” in A, i.e., for any T(a,8)> Y(a! B')>

Zar,g7) I A B(a,6) © Y(ar,51) = Y(o',8) © T ()

(3) If “-” has a unity e € X, then e(;,0) © Z(a,8) = Z(a,8) © €(1,0) for €ach z(, 5) € A.
From Proposition 3.2, we can define a t-intuitionistic fuzzy subgroupoid of a

groupoid X as follows:

Definition 3.1'. Let (X,-) be a groupoid and let A € IFS(X). Then A is called

t-intuitionistic fuzzy groupoid (in short, t-IFGP) of X, if for any z,y € X, pa(zy) >

pa(z)tpaly) and va(zy) < va(z)sivaly).

Proposition 3.4. Let (X, -) be a groupoid and let AC X. Then A= (x,,xs) is a

t-IFGP in X if and only if A is a subgroupoid of X.

Proof. (=): Suppose A = (XasXs) is a t-IFGP in X and let z,y € X. Then, by
Proposition 3.3,

palzy) 2 x4 (2)tx, (Y)
1 if z,y € A,
2{0 if ctdAoryg A
and, by Proposition 3.3,
va(zy) < xae(z)sexac(y)
0 if z,ye A,
={1ifw¢Amy¢A.
Thus A(zy) = (1,0). So 2y € A. Hence A is a subgroupoid of X.

(«<=): Suppose A is a subgroupoid of X and let z,y € X. If z,y € A, then
X4 (z) = x,(y) = 1. By the hypothesis, zy € A. Thus A(zy) = (1,0), i.e., pa(zy) =
1 and va(zy) = 0. So pa(zy) = x,(2)tx,(y) and va(ay) < Xue(@)six,e(y). If
z g Aory ¢ A, then x,(z) = 0 or x,(y) = 0. Thus x,(z)tx,(y) = 0 and
Xac(8)SeXue(y) = 1. So palzy) 2 x,(2)tx,(v) and va(zy) < X,e(®)seX 40 ()
Hence A is a t-IFGP in X. d
Remark 3.3. Proposition 3.4 is the generalization of Hur, Jang & Kang [8, Proposi-
tion 3.8]:

Let (X,-) be a groupoid and let A C X. Then A = (x,,Xx,.) is an IFGP in X if
and only if A is a subgroupoid of X.
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Definition 3.5. A {-norm ¢ is said to be continuous if t : I x I — I is continuous
with respect to the usual topologies.
It is clear that tg,t; and ¢9 are all continuous t-norms.

Proposition 3.6. Let {As}acr be any family of t-IFGPs in a groupoid (X,-). Ift
is continuous, then [\, cp Ao 45 a t-IFGP in X.

Proof. Let x,y € X. Since A, is a t-IFGP in X for each o € B, pa,(zy) >
pa,(z)tra, (y) and va, (zy) < va,(x)siwa, (y) for each a € 8. Then
Praesda(@Y) = N\ pan(zy) = N\ lbas (@)tpa, )]
ael el
and
Vaesda @) =\ Van(zy) < \/ [vaa (@)siva, (v)].
a€l acel
Since t is continous, t is continuous at ( Ager #4a (Z), Ager #aa(y)). Let € > 0.
Then there exists a § > O such thatif ry > A . pa, (z)+d and r3 > A op pa, (v)+9,
then ritry > (Ager #4a(2))t( Ager 142 (y)) + €. Let us choose ag € T such that
BAay (T) 2 Ager ba.(z) + 6 and pa, (y) > /\ael" #Aq(y) + 6. Then

Bhag (@)tpan, @) 2 (N paa@)t(pa., @) + €.
a€el
Thus
N\ Wty @)tan, D] > (N 240 (@)t(aq, ¥))-
a€el acl
So

/‘l‘ﬁael‘Aa (xy) 2 l‘l'ﬂael"Aa (w)t/‘l’naer‘Aa (y)
Similarly, we have v, 4, (¥) < Vngerda (T)8tVn,cra, (). Hence [ e Aq is a

t-IFGP in X. a

Remark 3.4. Since tg = “A” is continuous, Proposition 3.6 is a generalization of

Hur, Jang & Kang (8, Proposition 3.9]:

If {Aa}aer is a family of IFGPs in a groupoid (X, -), then (,cp Aq is an IFGP
in X.

Proposition 3.7. Let X and Y be groupoids and let f : X — Y an eptmorphism.
If A is a t-IFGP of X and t is continuous, then f(A) is a t-IFGP of Y.
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Proof. By the proof of Anthony & Sherwood [1, Proposition 4],

14y (Y1y2) 2> pcay(y1)tisay(yz), for any y1,y2 € Y.
Thus it is enough to show that
via)(y1y2) < veay(y1)svpa)(ye), for any y1,y2 € Y.

Let y1,92 € Y, let A; = f~ (1), A2 = f1(y2), A12 = f}(y1y2) and let A1 4 =
{z € X : £ = ajay for some a; € Aj,ay € Az}. Then, by the proof of Anthony &
Sherwood [1, Proposition 4], we have A1 A2 C Aj2. Since A is a t-IFGP of X,

viwise) = f-(a)mye) £\ vale)

z€A12
< /\ va(z) < /\ va(z1z2)
z€A1 A2 z1€41,22€A2
< A vale)swale)].

T1€EAL,Z2€ A
Let € > 0. Since s; is continuous, there exists a d > O such that if 1 < A, ¢4, va(zi)+
0 and 2= /\zZEAz VA(-TZ) +6, then T18tT2 < (/\3316,41 VA(wl))St (/\:szAz VA(CL'Z)) + €.
Choose a1 € A; and az € Az such that v4(a;) < /\zleAl va(e1) + 6 and va(ag) <
/\zleAl va(zi) + 6. Then:

va(a)swalaz) < ( N\ vale))sd )\ vale)) +e

T1€A; T2€A2
So
viay(mye) < N [val@)siva(z)]
z1€A1,52€A2
< (N val@))s( N\ valze)
T1€A,; z2€A2
= vpa)(y1)sescay(y2)-
Hence f(A) is a t-IFGP, of Y. O
Remark 3.5. Since tg = “A” and sg = “ V7 are continuous, without the condition

of “having the sup property”, Hur, Jang & Kang [8, Proposition 4.4 (1)] holds.
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