J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 10, Number 4 (November 2003), Pages 255-263

A COMPARISON OF
COMPUTING TIMES ON THE BICUBIC B-SPLINE

Hoir Sus Kim

ABSTRACT. We compare the computing times on the bicubic B-spline dueing to the
algorithms.

1. INTRODUCTION

The computing time is very important because it costs. The surface fitting re-
quires the computation of components of matrix generated by least squares method
whose components are composed of functions. In engineering, the fitting is very
often repeated to test several problems so that the computing times can not be
neglected. So we suggest the difference between two algorithms.

2. B-SPLINE BASIS

The application of B-spline basis appears in several fields (¢f. Ashahi, Ichige &
Ishii 1], de Boor [2}, Hollig (3], Lee & Park [5], Pourazady & Xu [6], Stam [7] and
Yong, Hu, Sun & Tan [8]). The following recurrence is preferred for its numerical
stability and efficiency in computation (cf. Kim [4]).

(2.1) M| tizk,--- ts)
ti—t t—

bi—k
= e *M(t | ti—k-{—l,---,ti)’*" —2F *M(t l ti—k,-u,ti——l)
ti —tik b — ik

Received by the editors March 28, 2003 and, in revised form, July 21, 2003.
2000 Mathematics Subject Classification. 65D07.
Key words and phrases. bicubic B-spline, computing times.

(© 2003 Korea Soc. Math. Educ.
255

256 Hor Sus Kim

where the recurrence relation is started with
1
M(t | tio1,) = { ti—ti1’
0, otherwise

ti-1 <t <ty

The derivative of the equation (2.1) is given by

d
2.2 - ik sbi
(22) M|tk t)
k-1

= m(M(t | ticky.-- ,ti_1) — Mt ticks1,--- ,t,')).

But in programming, one may prefer to use the following piecewise cubic poly-
nomial (2.6) and its derivative, which is more fast than the recursive relation (2.1)
and its derivative (2.2) in the sense of implementation.

The piecewise constant function is given by

1
— i <t<Y
(2.3) M|ty t) = ti—ti-t’ ’
0, otherwise
The piecewise linear function is given by
fmtia, 1 tig<t<t
y -2 S i—1
ti—tio tiig—ticg)

2.4 M| ti—g tic1,6) =
(2.4) (]2, ti-1,8:) .)

* b
ti—ti—2a ti—t

Li-1 <t<t

The piecewise quadratic function is given by

(2.5) M(t|ti-s,ti—2,ti-1,t:)
((t — ti_3)?
(ti — tim3)(tic1 — tio3)(tica — ti3)’
(t: —t)(t — ti-2)
(ti — tiz3)(ts — tic2)(tio1 — ti2)
(t —tis)(tiza —2)
(t; — tiz3)(tic1 — tiza)(tic1 — ti—2)’
(t: —t)°
L (b — tica)(ti — tiz2)(ts — tic1)’

ti—3 St <t

A

+ tio <t <t

i1 St<t

A COMPARISON OF COMPUTING TIMES ON THE BICUBIC B-SPLINE 257

The piecewise cubic function is given by

(2.6) M(t ‘ tt_4,ti_3,ti_2,ti_1,ti)
((t—tig)®
(t; — ti—a)(ti-1 — ti—a)(ti—2 — ti—a)(ti—3 — ti—4)’
(t; — t)(t — ti_3)*
(ts — ti—a)(ti — tizg)(tic1 — ti—3)(tic2 — ti_3)
(t — ti_a)(tic1 — t)(t — t;_3)
(ti — ti—a)(tic1 — ti—a)(tim1 — ti-3)(ti—2 — ti-3)
(t = ti—a)?(tiz — 1)
B (ti — ti—a)(tic1 — tiza)(ticz — tia)(tic2 — tiz3)’
= (t; — t)%(t — ti2)
(t; — tica)(ts — tiza)(t; — ti—2)(ti1 — ti2)
(b —t)(t — ti_3)(tic1 — £)
(ti — tica)(ti — tims)(tio1 — ti—3)(tic1 — ti—2)
(t = tima) (tic1 — 1)
(ti — tica)(tim1 — tica)(tic1 — tiz3)(tic1 — tiz2)’
(ti — t)3
(b — tima) (b — tiza)(t — tiza)(ts —tic1)’

tica <t <ti-3

.+_

+ tie3 St <tig

_|..

+ o St <t

i1 St<t;

3. THE LEAST SQUARES METHOD

Let
Bi(t) = M(t|ti—a,... ;).

Then we find the bicubic spline surface

m n

S(z,y) = Z Z ai; Bi(z) Bj(y)

i=1 j=1
of degree 3 which best fits the derivative data (zx, yx, ¥, f;), k=1,...,1, where |
is the number of data points and f* = %ﬁ(wk,yk), f{f = %g(mk,yk) are the deriva-
tive data obtained by Snell’s law in the correction lens of Color Display Tube, for

example.
We must assign one height value so that the surface is uniquely determined. In

our case, we give zero at the center of the correction lens.

258 Hor! Sus Kim

Then we minimize the residual sum of the squares of the errors.
(3.1)

E = E(a11,012, - - -, Amn)
-3 {3 SO TILTARAY
k=1 i=1 j=1 =1 j=1

The necessary and sufficient condition for minimizing the equation (3.1) is as follows.

l m n
(3.2) 3am Z(ZZ% Ye) = £) By(@k) By(un)

i=1 j=1
l
23 (303 aBilen) B ue) —) Byfen) By o)
k=1 1i=1j=1
=0
wherep=1,...,m, ¢=1,...,n.

Thus, the coefficients satisfy the normal equations

m n l
33) D > ai; Yy {B; (2k)B; (i) By (i) By () + Bi(wk)B;(yk)Bp(xk)B;(yk)}

i=1j=1 k=1

l
=" { #£B} (@) Ba(u) + £ Byl Bywn) },

k=1
wherep=1,...,m, ¢g=1,...,n.

This equation can be written in matrix form AX = B where A is the mn x mn
matrix, X is the mn coefficients a;; and B is the mn vector. In this case, we compute
the components of the matrix A and B.

In Appendix, Visual basic Pseudocode is given. Public Sub fitting spline
derivative() is the computation of the components of the matrix A and B of the
matrix equation AX = B.

Public Function basis() is the basis computation of the piecewise cubic func-
tion (2.6). Public Function dbasis() is the computation of the derivative of the
piecewise cubic function (2.6). Public Function basisr() is the computation of
the old recursive function (2.1).

In Color Picture Tube (for TV usage) and Color Display Tube (for Monitor
usage), the ray-tracing occurs in Exposure Process. The mechanism consists of
Lamphouse, Correction Lens, Filter, Shadow Mask, Panel as in Figure 1. The

A COMPARISON OF COMPUTING TIMES ON THE BICUBIC B-SPLINE

PANEL
MASK

FILTER

Lens-2

Lens-1

Lamp House

Figure 1. Exposure Process

259

Lamphouse is the source of light. The surface type for correction lens is polynomial

or B-spline surface, that of Filter is flat plane, that of Shadow mask is a polynomial

and that of the panel is a polynomial.

In ray-tracing of landing error corrections, the surface of the correction lens is

reconstructed by least squares method of derivative data generated by Snell’s law. In

that case, the calculation of the B-spline basis function and its derivative function

is repeated several times for which measurement points of landing errors are 169

points, for example. When we call fitting spline derivative(), the piecewise

cubic algorithm is more fast than the old recursive algorithm approximately 50 as

in Table 1.

Table 1. Computing times according to algorithms

Number of points

The old recursive
algorithm (2.1)

The piecewise cubic
function (2.6)

100 5 seconds 3 seconds
1000 50 seconds 30 seconds
3000 150 seconds 85 seconds

260 Hor SuB Kim

REFERENCES

1. T. Ashahi, K. Ichige & R. Ishii: A Computationally Efficient Algorithm for Exponential
B-splines Based on Difference/IIR Filter Approach. IEICE transactions on fundamen-
tals of electronics communcations and computer science 85 (2002), no. 6, 1265-1273.

2. C. de Boor: Package for calculating with B-splines. STAM J. Numer. Anal. 14 (1977),
no. 3, 441-472. MR 55#1711

3. K. Hollig: Stability of the B-spline basis via knot insertion. Comput. Aided Geom.
Design 17 (2000), no. 5, 447-450. MR, 2000m:41009

4. H. S. Kim: On the construction of a surface from discrete derivative data and its
extended surface using the least squares method. Korean J. Comput. Appl. Math. 4
(1997), no. 2, 327-336. MR 98e:65008

5. B.-G. Lee & Y. Park: Degree elevation of B-spline curve and its matrix representation.
Korea Soc. Indust. Appl. Math. 4 (2000), no. 2, 1-10. _

6. M. Pourazady & X. Xu: Direct manipulations of B-spline and NURBS curves. Adv.
Eng. Softw. 31 (2000), no. 2, 107-118.

7. J. Stam: On subdivision schemes generalizing uniform B-spline surfaces of arbitrary
degree. Comput. Aided Geom. Des. 18 (2001), no. 5, 383-396.

8. J-H. Yong, S.-H. Hu, J.-G. Sun & X.-Y. Tan: Degree reduction of B-spline curves.
Comput. Aided Geom. Des. 18 (2001), no. 2, 117-127.

APPENDIX. VISUAL BASIC PSEUDOCODE

Public Sub fitting_spline_derivative()
For k = 1 To 1d
For ip = 0 To im
sxp = basis(ip, dx(k), knotx)
dsxp = dbasis(ip, dx(k), knotx)
For jq = 0 To jn
syp = basis(jq, dy(k), knoty)
dsyp = dbasis(jq, dy(k), knoty)
For i = 0 To im
sx = basis(i, dx(k), knotx)
dsx = dbasis(i, dx(k), knotx)
For j = 0 To jn
sy = basis(j, dy(k), knoty)

A COMPARISON OF COMPUTING TIMES ON THE BICUBIC B-SPLINE

dsy = dbasis(j, dy(k), knoty)
a(i * (jn +# 1) + j+1, ip * (jn + 1) + jq + 1) =
a(i * (jJn + 1) + j+1, ip * (jn + 1) + jq + 1)_

+ weightx(k) * dsx * sy * dsxp * syp_

+ weighty(k) * sx * dsy * sxp * dsyp_
+ basis(i, 0, knotx) * basis(j, 0, knoty)_

* basis(ip, 0, knotx) * basis(jq, O, knoty)

Next j

Next i

b(ip * (jn + 1) + jq + 1)

b(ip * (jn + 1) + jg + 1)_

+ weightx(k) * dsxp * syp * dzdx(k)_
+ weighty(k) * sxp * dsyp * dzdy(k)_

261

+ basis(ip, 0, knotx) * basis(jq, O, knoty) * zcentervalue

Next jq
Next ip
Next k
End Sub

Public Function basis(ByVal i As Integer,_
ByVal x As Double, knot) As Double
If (x >= knot(i - 4) And x < knot(i - 3)) Then
basis = (x -~ knot(i - 4)) * (x - knot(i - 4))_

* (x - knot(i - 4))

ElseIf (x >= knot(i - 3) And x < knot(i - 2)) Then
basis = (knot(i) - x) * (x - knot(i - 3))_

* (x - knot(i ~ 3))
+ (x - knot(i - 4))
* (x - knot(i -~ 3))
* (x - knot(i - 4))

*

+

*

(knot(i - 1) - x)_
(x - knot(i - 4))_
(knot(i - 2) - x)

ElseIf (x >= knot(i - 2) And x < knot(i - 1)) Then
basis = (knot(i) - x) * (knot(i) - x) * (x - knot(i - 2))_
+ (knot(i) - x) * (x - knot(i - 3)) * (knot(di - 1) - x)_
+ (x - knot(i - 4)) * (knot(i - 1) - x)_

* (knot(i - 1) - x)

Elself (x >= knot(i - 1) And x < knot(i)) Then

262 Hor Sus Kim

basis = (knot(i) - x) * (knot(i) - x) * (knot(i) - x)
Else

basis = 0
End If

End Function

Public Function dbasis(ByVal i As Integer,_
ByVal x As Double, knot) As Double
If (x >= knot(i - 4) And x < knot(i - 3)) Then
dbasis = 3 * (x - knot(i ~ 4)) * (x - knot(i - 4))
ElseIf (x >= knot(i - 3) And x < knot(i - 2)) Then
dbasis = (-(x - knot(i - 3)) * (x - knot(i - 3))_
+ 2 * (knot(i) -~ x) * (x - knot(i - 3)))_
+ ((knot(i - 1) - x) * (x - knot(i - 3))_
- (x - knot(i - 4)) * (x - knot(i - 3))_
+ (x - knot(i - 4)) * (knot(i - 1) - x))_
+ (2 % (x - knot(i - 4)) * (knot(i - 2) - x)_
- (x - knot(i - 4)) * (x - knot(i -)0
Elself (x >= knot(i - 2) And x < knot(i - 1)) Then
dbasis = (-2 * (knot(i) - x) * (x - knot(i - 2))_
+ (knot(i) - x) * (knot(i) - x))_
+ (~(x - knot(i - 3)) * (knot(i - 1) - x)_
+ (knot(i) - x) * (knot(i - 1) - x)_
- (knot(i) - x) * (x - knot(i - 3)))_
+ ((knot(i -~ 1) - x) * (knot(di - 1) - x)_
-2 * (x - knot(i - 4)) * (knot(i - 1) - x))
ElseIf (x >= knot(i - 1) And x < knot(i)) Then
dbasis = -3 * (knot(i) - x) * (knot(i) - x)
Else
dbasis
End If
End Function

]
o

Public Function basisr(ByVal i As Integer,_
ByVal x As Double, ByVal k As Integer)_

A COMPARISON OF COMPUTING TIMES ON THE BICUBIC B-SPLINE 263

As Double
Dim d As Double
d = knotx(i) - knotx(i - k)
If (k = 1) Then
If (x < knotx(i) And x >= knotx(i - 1)) Then
basisx = 1# / (knotx(i) - knotx(i - 1))
Else
basisx = O#
End If
Else
basisx =((knotx(i)-x)/d)*basisx(i,x,k-1)+((x~knotx(i-k))/d)_
xbasisx(i-1,x,k-1)
End If

End Function

DEPARTMENT OF MATHEMATICS, KYUNGWON UNIVERSITY, SAN 65, BOKJEONG-DONG, SUJEONG-
GU, SEONGNAM, GYEONGGI 461-701, KOREA
Email address: hskimm@kyungwon.ac.kr

