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ON THE FEKETE-SZEGO PROBLEM
FOR CERTAIN ANALYTIC FUNCTIONS

OH SANG KwoN AND Nak EuN CHO

ABSTRACT. Let CS.(83) denote the class of normalized strongly a-close-to-convex
functions of order 8, defined in the open unit disk ¢/ of C by

flz) | 2f'(2) }
ar l-a)—<+a
& {( )g(z) 9(2)
such that g € §*, the class of normalized starlike unctions. In this paper, we obtain
the sharp Fekete-Szegd inequalities for functions belonging to CS4(8).

< 28 (aB20),

1. INTRODUCTION

Let S denote the class of analytic functions f of the form
x>
f(z) =z+2anz" (1.1)
n=2

which are univalent in the open unit disk & = {z C C: |2| < 1} & let 8* be the
subclass of S consisting of all starlike functions. A classical theorem of Fekete and
Szegd 4] states that, for f € S given by (1.1),

3-4u if ©<0,
|a3—ua%|§ 142e~2/(-1) if 0< p<1,
4p—3 if w>1,

The inequality is sharp in the sense that for each pu, there exists a function in §
such that equality holds. There are also several results of this type in the literature.
Various interesting developments involving the Fekete-Szegt problem can be found
in Abdel-Gawad & Thomas [1}], Keogh & Merkes [7] and London [8].
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We denote by K(B) the class of strongly close-to-convex functions of order S.
Thus f € K(B) if and only if there exists g € S* such that

2f'(z)
T

<8 (B20; zeU).

For 0 < 8 < 1, the class K(f) is a subclass of close-to-convex functions introduced
by Kaplan [6] and hence contains only univalent functions. However, Goodman
[5] showed that K(8) can contain functions with infinite valence for § > 1. The
Fekete-Szegd problems for K£(1) and K(), respectively, have been solved by Keogh
& Merkes 7] and London [8], respectively.

We now introduce a new class which covers the class K(3) as follows:

Definition. A function f € S, given by (1.1) is said to be strongly a-close-to-convex
of order g if there exists a function g € §* such that

arg {(1- )70 zf'(z)}\ <5 @B20zeu). (1)

PO
We denote by CS4(f) the class of strongly a-close-to-convex functions of order £.
We note that CSo(1) = CS, the class of close-to-star functions introduced by Reade
[10] and CS1(B) = K(B)-
The purpose of the present paper is to prove the sharp Fekete-Szegd inequalities

for the functions belonging to the class CS,(8).

2. MAIN RESULTS

Theorem. Let f € CS,(B) and be given by (1.1). Then for o, B > 0, we have

2(1 + 2a)|ag — paj|

(., 201+ 8)*((1 + @)® — 2(1 + 2e)u) . B(1+a)?
1+ (1 + a)2 if b= 2(1+8)(1+2a)°
2((1+ @) — 2(1 4 2a)p) e B(1+a)? 1+a)2
<pu<
AT e B F oy 2 4 da)p) | TP S B S iy
e (14a)? B+2)(1+a)?
1424 if oigaay SHS 2(ﬁ+1)(1+221)’
2(1 4+ B)%(2(1 + 20)p — (1L + 0)?) - 442)(1+a)?
\_H‘ 1+ a)? lf/‘z%(ﬁ_ﬁ)éﬁﬁ%i'

For each u, there is a function in CSo(B) such that equality holds in all cases.
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To prove above Theorem, we need the following.

Lemma. Let p be analytic in U and satisfying Rep(z) > 0 for z € U, with p(z) =
14+p1z+p2z?+---. Then

| pn | <2 A (2.1)

and ) )
_Bf g Iml 2.2
p2- 5| < 5 (2:2)

The inequality (2.1) can be first proved by Carathéodory [2] (also, see Duren (3],
p. 41) and the inequality (2.2) can be found in [Pommerenke [9], p. 166].

Proof of Theorem. Let f € CS8,(8). Then it follows from (1.2) that we may write

(2) , 2f'(z)
l-a +a = z), 2.3
U= " P (23)
where g is starlike and p has positive real part. Let g(2) = 2 +by2? +b3z3+---, and

let p(z) be given as in Lemma. Then by equating coeflicients of both side of (2.3),

we obtain
(1+ a)ag =b2+ B;
and
—-1
(1 +2a)ag = b3 + Bpi1bz + B('BT)P% + Bp2.

So, with

1+ a)? = 2(1 4 2a)p

(1+a)? ’

we have

(14 20)(a3 — pal) = bs + %(m — 1)b% + B(p2 + %(Bm —1)p?) + Brprbe.  (2.4)
Since rotations of f also belong to CS, (), without loss of generality, we may assume
that a3 — ua% is positive. Thus we now estimate Re (a3 — ,u,a%).

Since g € S*, there exists h(z) = 1 + k1z + ka2? + - - - (|2| < 1) with positive real
part such that z¢'(2) = g(2)h(z), and so equating coefficients, we have by = k; and
bs = (k2 + k%)/2. Hence, by Lemma,

1 1,\ 142
Re (bg + %(m - 1)b§> = ;Re <k2 - 5k%> + J:l % Re k2 (2.5)

<1—p%+ (1+2z)p* cos 20,
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where by = k1 = 2pe*? for some p in [0,1]. We also have

1 1 1
Re (Pz + 5(5«’0 - 1)10%) = Re <p2 - 5?%) + §ﬂ$ Re p? (2.6)

< 2(1-1?) + 2Bzr? cos 26,

where p; = 2re® for some 7 in [0,1]. From (2.4), (2.5) and (2.6), we obtain

Re (1 + 2a)(a3 — pua3)
<1—p+ (14 22)p% cos 26+28(1 — r2 4 2Bz cos 20)+4Bzrpcos(f + ¢), (2.7)
and we now proceed to maximize the right-hand side of (2.7). This function will be

denote 1 (z) whenever all parameters except z are held constant.
At first, we assume that
B(1 + a)? (1+ a)?
2(1+B)(1+ 20) 2(1+2a)’
so that 0 < z < 1/(1 + B). Since the expression —t2 + 28z cos 26 + 2zt is the largest
when ¢t = /1 — Sz cos 26, we have

Su<

2 :112

z
< .
1—pfxcos20 — 1— Bz

—t2 + t2B8z cos 20 + 2zt <

Thus

$2
w(m)§1+2x+2ﬁ(1+1_ﬂz)

2((1+ @)? = 2(1 + 2a)p)
(14 a)?-B((1+a)? —2(1+2a)u)
and with (2.7) this establishes the second inequality in the theorem. Equality occurs

=1+26+

only if
_ 2((1+ a)? = 2(1 4 2a)p)
L= e “ B0+ a)? - 2(1 + 20)p)
and the corresponding function f is defined by

(1-0a)f(z) +azf'(z) = L (/\

ap2:2’ b2:2) b3=3s

B

142z 1-2
1-A ,

1——z+( )1+z>

where

N (14 a)?+ (1 - B)((1+ a)? = 2(1 + 2a)p)
B )

201+ )2 = B((1+ )? = 2(1 + 2a)p)
We now prove the first inequity. Let
2
< B(1+ ) ,
2(+1)(1 4 2c)
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so that z > 1/(1 4 8). With zg = 1/(1 + ), we have

P(z) = P(wo) + 2(x — 0)(p? cos 2¢ + B2r? cos 20 + 2pBr cos(6 + ¢))
< (o) +2(z - 0)(1 + B)*
2(1+ B8)%((1 + @)? — 2(1 + 2a)u)
(14 a)? ’
as required. Equality occurs only if py = py = 2, by = 2, bs = 3, and the corre-

<1+

sponding function f is defined by

B
z 1+2
(1- a)f(z) + azf,(z) = (1 _ 2)2 <1 _ z) ’
Let z; = —1/(1 + B). We shall find that ¢(z;) < 1+ 28, and the remaining
inequalities follow easily from this one. By an argument similar to the one above,

we obtain

P(z) < ¢(z1) + 2|z — z1|(1 + B)?
2(1+ B)2(2(1 + 2a)u — (1 + @)?)
(1+ a)? ’

< -1+

if z < z1, that is,
o (B+2)(+a)
F=2B+ 1)1+ 2a)
Equality occurs only if p1 = 24, ps = —2, by = 21, b3 = —3, and the corresponding
function f is defined by

z 2\ P
(1 - )f(2) + azf'(2) (1 “Z) |

T 1=z \1-iz
Also, for 0 < A < 1,
Y(Az1) = Mp(z1) + (1 — A)y(0)
<AM1+28)+ (1= A)(1+28) =1+ 28,
so(z) <1428 for z; <2 <0, ie,

(1+ a)? (B+2)(1+ a)?
31 +20) ~F S 3BT 1)1 +20)

Equality occurs only if p; = b = 0, p2 = 2, b3 = 1, and the corresponding

function f is defined by

z 22 s
(1= f(a) + asf'e) = 2l
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We now show that ¥(z1) < 1+ 28. Since

— (1 — Bz1c0s20)t? + 21 pcos(f + ¢)t

= (1 frcos2t) 1 - p_.<9+_¢>>2 2Pcos?(0 + 9)

1 — Bxycos20 1 — Bz1c0s20
and
1—pfBzicos20 =1+ 1+ﬂcos202 1-—1—_?_—5 >0,
we have
2
$(@1) - (1+28) < o2 [ =1+ (1 + 221) cos 26  DELEF 0820 + #)))
1~ Bxqcos26

Thus we consider the inequality
Bx3(L+ cos2(8 + ¢)) + (1 — Bz1 cos 26)(—1 + (1 + 2z) cos 2¢) < 0.
After some simplifications, this becomes
(cos2¢ — 1)(cos 28 + 1) — B(1 + cos 260 + sin 20sin 2¢) — 1 — cos 24 < 0,
which is true if
28%sin?pcos® + 28 cos O sin f cos $sin ¢ + cos®¢ > 0. (2.8)

Now, for all real ¢,
2% + 2t sin 6 cos ¢ + cos? ¢ >0,

so, by taking t = fsin ¢ cos 6, we obtain (2.8). This completes the proof of Theorem.
For the case a = 0 in Theorem, we have the following. ]

Corollary. Let f € CSo(B) and be given by (1.1). Then for B > 0, we have

, : B
1+2(1+8)%(1-2p) if pu< 0+ 5)
2(1 — 2u) . B 1
N i) e Rl
|a'3_it‘l‘a’2|S< 2+ﬂ
1428 if 3<p< 201 f)’
2(1+ B)2(2(1 + 2a)p — (1 + 3a)) . 2+8
(7 1+a)? w2 omray

For each u, there is a function in CSp(B) such that equality holds in all cases.
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Remark. (i) Putting ¢ = 8 = 1 in Theorem, we have the result by Keogh &
Merkes [7].

(if) Taking a = 1 in Theorem, we obtain the corresponding results by Abdel-

Gawad & Thomas [1] and London [8].

10.
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