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THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE
LINEAR PROCESSES GENERATED BY NEGATIVELY
ASSOCIATED RANDOM VECTORS

TAE-SUNG KM, M1 HwA Ko, AND MYEONG-HEE RO

ABSTRACT. Let {X:} be an m-dimensional linear process of the form
o0
Xe=) AL,
=0

where {Z;} is a sequence of stationary m-dimensional negatively associated random
vectors with EZ; = Q and E||Z]|> < co. In this paper we prove the central
limit theorems for multivariate linear processes generated by negatively associated
random vectors.

1. INTRODUCTION

Notions of negative dependence for collections of random variables have been
much studied in recent years. The most prevalent negatively dependent notion is
that of negative association. A finite collection {Y;,1 < i < m} of random variables is
said to be negatively associated (NA) if for any disjoint subsets A, B of {1,2,...,m}
and for all coordinatewise nondecreasing functions

FiR* SR, g:RE 3 RCov(f(Y;:i€ A),9(Y;:j€B)) <0,

where the covariance is defined. An infinite collection of random variables is nega-
tively associated if every finite subcollection is negatively associated. This negatively
dependent notion was first defined by Joag-Dev & Proschan [6]. Negatively associ-
ated sequences are widely encountered in multivariate statistical analysis and relia-
bility theory, and the notions of negative association have more attention recently.
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We refer to Joag-Dev & Proschan [6] for fundamental properties of negatively associ-
ated sequences, Newman [8], Birkel [2] and Zhang [10] for the central limit theorem,
Matula [7] for the three series theorem, Shao [9] for the Rosenthal-type maximal
inequality and the Kolmogorov exponential inequality.

Let X;,t = 0,+1,..., be an m-dimensional linear process of the form
[o <]
Xe =Y AZj (1)
§=0

defined on a probability space (2, A, P), where Z;,t = 0,%1,..., is a sequence of
strictly stationary m-dimensional random vectors with mean @ : m x 1 and positive
definite covariance matrix I' : m x m. The class of linear processes defined in (1)
contains stationary multivariate autoregressive moving average processes (MARMA)
that satisfy certain condition (See Brockwell & Davis [3]). Fakhre-Zakeri & Farshidi
[4] established a central limit theorem for linear process generated by iid random
variables, and Fakhre-Zakeri & Lee [5] derived a central limit theorem for multivari-
ate linear process generated by martingale difference random vectors.

In this paper we introduce the notion of negatively associated random vectors
and prove the central limit theorems for stationary multivariate linear processes
generated by negatively associated random vectors.

2. RESULTS

Definition 2.1. A finite sequence {Z,1 < t < n} of m-dimensional random vectors
is said to be negatively associated if for any disjoint subsets A,B of {1,...,n} and
for all coordinatewise nondecreasing functions f and g we have

Cov(f(Z;:i € A), g(Z; : j € B)) <0, (2)
whenever this covariance is defined. Infinite collection of m-dimensional random
vectors is negatively associated if every finite subcollection is negatively associated.
Lemma 2.2. Let {Y1,---,Y,} be a strictly sationary sequence of negatively associ-
ated random variables with EY; = 0, EYE < co. Then

E(max |Y; + -+ Y|?) < AnEY?
1<k<n

where A is a positive constant.

Proof. See the proof of Lemma 4 of Matula [7]. O
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Lemma 2.3. Let {Z; : 1 <t < n} be a strictly stationary sequence of negatively as-
sociated m-dimensional random vectors with EZy = 0 and E || Z ||?>< oo, where
for a vector z € R™, denote its Euclidean norm by ||z||. Then, there is a positive
constant A such that

k

2, 2 2 .
E max | ;Zt I’< Am’nE || Zy | (3)

Proof. Note that

2 () 2
max ||Zzt|| <mY max 122 |

and by Lemma 2.2,

k n
() 12 () 2
E max |} 2 |SA;E|Zt I

n
<A E|Z )
t=1

= AnE || Zy |I%,

where Z, () s the j-th component of Z;. Thus (3) follows. a

Lemma 2.4. Let {Z,t > 1} be a strictly stationary sequence of negatively associated
m-dimensional random vectors with E(Z;) = O, E||Z1]|?> < co. Let

00 k
Xe =Y AjZ, Sk = th,
i=1 t=

ZA, )Z; and S,C_th
j=1 t=1

Assume

[e ] o

Z HAJ” < oo and ZA]' # Omxm, (4)
where for any m x m,m > 1, matriz A = (a;),||Al| = i, >0 laijl and Omxm

denotes the m X m zero matriz. Then

_1
n"? max ISk — Skll = 0p(1).
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Proof. First observe that

and thus,
. k e} k oo
s-5e=-3- (D) + (3 ala
t=1 \ j=t t=1 \ j=k—t+1
=L 41 (say).
To prove
_1
nd max 4] = o,(1) ©)
note that
k oo 2
1 )
B max |2 2 A By
- - t=1 j=t
oo jAk 2
_ -1 , .
=n"*E lrSnI?gcn Jz—; 2 Aj; 7y

jNk

I

2y 3\ 2
} ) by Minkowski inequality

-1 (ZIIAJ'II {Elgl,ggcn
j=1 ==
1.9
jAn
< AmPE || 2y |? [Z | 4; II< ) ]

j=1

by (3) and (4) and E || Z; ||*< oo. By the dominated convergence theorem the last
term above tends to zero as n —» oco. Thus (5) is proved by the Markov inequality.
Next, we show that

_1
nd max 1% = op(1). (©)
Write
Iy=I1I +1I,
where

I = A1Zk + Ap(Zp + Zg—1) + -+ Ap(Z + - - - + Z1)
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and
Iy = (Agt1+ Agga + ) (Zg + -+ + 7).

Let p, be a sequence of positive integers such that
Pn — 00 and p,/n — 0 as n — oo. (7)

Then

00
1 1
-2 < . -3 ‘e
n- 2 max ||II2|| < (i—EOHAl”)n 2 1;111‘%};(;" “Zl+ +Zk"

1<k<n

-1
+ (Z ||Ai||> nd max 21+ + Zal

i>pn

= 0p (1> + Op< > IlAz-II>
i>pn

= 0p(1)

by (4), (7) and E || Zy ||>< oo. It remains to prove that
~1
Y,:=n"2 11;1:;} | I11]| = 0p(1).
To this end, define for each [ > 1

Il = B1Zyg+ Bo(Z + Zg—1) + -+ + Bp(Zg + - - - + Z1),

where
Bo={ g K31

Let Y, = n=i maXi<ik<n | 111, Clearly, for each ! > 1,

Yo = 0p(1). (8)
On the other hand,

& 2

n(Yp; —Yn)® < Jpax Z(Ai —B)(Zg + -+ + Zg—i11)
i=
k 2
< max <z=21.;1 Al - 112k + - -- +Zk—i+1”)

2
= Z 4 ax Inax 2
B <'>l ” z”) lr<x}c§n lrgigk "Zk + +Zk—z+1||
(3
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2
< ) 112,
<4 (Z IIAzH) lrsr%||21+ + Zj||

>l
From this result, (4) and E || Z; ||2< oo, for any § > 0,

lim lim sup P(|Yy,; — Yu|? > 6)

o0 n—00

2
C -1 , -1 112
< lhm lim sup 46 (Z ||A,|l> n Elrélja,sxn |Z1 + - - + Zj||

—oon -
>l

2
< 4Am*E | Z4 ||2llim (Z ||A,-||) =0. (9)
-—00
>l

In view of (8) and (9), it follows from Theorem 4.2 of Billingsley [1, p. 25] that
Y, = 0p(1). This completes the proof of Lemma 2.4. O

Theorem 2.5. Let {Z; : t > 1} be a strictly stationary negatively associated sequence
of m-dimensional random vectors with E(Z;) = O and E || Z, ||?< oo.
Let Sp =30 1 Zs. If

E|z: P +23 Y Ez9z7) = 0% < 0 (10)
t=2 j=1

holds, then, as n — o0,
n"%S, = N(O,T)

with covariance matriz I = [og;], k=1,...,m; j=1,...,m,

Mg

on = B(z20) + Y [B(22?) + B2 Z]V)). (11)

t

Proof. By Theorem 12 in Newman [8] it follows from (10) that, for each j(1 < j <

m)’

Il
[\

n
lim n‘% Z Zt(]) = U;Z;
t=1

n—00

where Z;. is standard normal and

[o o]
o = B(z9)? + 23 E(Z2Y2{) < .
t=2
Hence by the Cramer-Wold device (See Billingsley [1, pp. 48-49]) the desired
result follows. ]
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Theorem 2.6. Let {Z;,t > 1} be a strictly stationary negatively associated sequence
of m-dimensional random vectors with E(Z;) = O, E||X||* < oo and {X;} an m-
dimensional linear process deﬁned in (1). Set

5= 3 Kl =0, 8= 38,
t=1

as in Lemma 2.4. If ({) and (10) hold then
n=1S, N(O,T}) as n— o0, (12)
where T = (3272, Aj)T (32521 4;)" and T is defined as in (11).

Proof. First note that
(e o] n
n"%gn =n"% (EAJ') ZZt
j=1 t=1

and that n=3S, = N (0, T) according to Theorem 2.5. Hence, n"%S, —» N (0, 7)
follows by applying Lemma 2.4 and Theorem 4.1 of Billingsley [1]. d

We now introduce another central limit theorem.

Theorem 2.7. Let {Z;,t > 1} be a strictly stationary negatively associated sequence
of m-dimensional random vectors with E(Z;) = O, E||Z1]|? < co and let {X;} be an
m-dimensional linear process defined in (1). If

Yo> N4l <oo (13)
=1 j=i+1
hold. Then
n 5§, 2 N(O,T) as n— oo,
where T = (3272, A;)T (32721 4;)" and ' is defined as in (11).
Proof. Letting 4; = Z ~ip1Aj and Y; = Yoo A;Z_;, which is well defined since
20 14i]] < oo by (13), we have

(ZA)Zt AoZt-f—Z(A = Ain1)Z4

=0
= (> 4)Z+ Ve - v,
=0
which implies that
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According to Theorem 2.5 we have n~3 St1Zy - N(O,T) as n — oo and thus
using this result on (3 o Ai) .5 ; Zt, we have

(ZAi)ZZt — N(O,T) as n — oo.
i=0 t=1
Hence, this theorem is proved if
Y
T%L@asn—)oo. (14)

To prove (14) it is sufficient to show that

Yn — O a.s. as n — oo. (15)

Jn

But (15) follows from the fact that for any € > 0

o0 [o o]
|Yn,j| _ .
;P<ﬁ > € —T;P(|Yb,]|>\/7_ze)<oo,

for all j, where Y, ; denotes the j-th component of Y,,. a
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