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GENERALIZED CR-SUBMANIFOLDS OF A T-MANIFOLD

U. C. DE, Y. MATSUYAMA, AND ANUP KUMAR SENGUPTA

ABSTRACT. The purpose of the present paper is to study the generalized CR-
submanifold of a T-manifold. After preliminaries we have studied the integrability
of the distributions and obtained the conditions for integrability. Then geometry of
leaves are being studied. Finally it is proved that every totally umbilical generalized
CR-submanifold of a T-manifold is totally geodesic.

1. INTRODUCTION

Bejancu [1, 2] defined and studied CR-submanifolds of Kaehlerian manifolds.
CR-submanifolds of Sasakian manifold were studied by Kobayashi [7] and Shahid,
Sharfuddin & Husain [11]. Chen [6] introduced the notion of a generic submanifold
of a Kaehler manifold. Generic submanifolds of Sasakian manifolds were studied by
many authors including Verheyen [12]. Blair 3] studied the metric the f-structure
with complemented frames. If the stucture is normal and has closed fundamental
2-form (®), then f-structure is called a K-structure, as an analogue of Kaehler. If in
addition each of the 1-forms my, 72, . . ., s is closed, Blair 3] called it a C-structure, as
an analogue of cosymplectic. If the K-structure satisfies ® = dnp =dnpy = --- = dpn,,
he called the K-structure a T-structure (cf. Blair [3]), as an analogue of Sasakian
structure. It is possible to have a Darboux theorem in a T-structure. Mihai [8] have
defined a new class of submanifolds called a generalized CR-submanifold of a Kaehler
manifold. This class contains both CR-submanifolds and slant submanifolds. The
Riemannian product of a slant submanifold and a totally real submanifold of a Her-
mitian manifold is a generalized CR-submanifold. Also the Riemannian product of
a complex submanifold, a slant submanifold and a totally real submanifold of a Her-
mitian manifold is a generalized CR-submanifold. Mihai [9] also studied gereralised
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CR-submanifold of a Sasakian manifold. Sengupta & De [10] studied a generalized
CR-submanifolds of a trans-Sasakian manifold. Calin [5] studied CR-submanifolds
of a T-manifold.

The purpose of the present paper is to study the gereralised CR-submanifold of
a T-manifold. In section 4 we have studied the integrability of the distributions
and obtained the conditions for integrability. Geometry of leaves are being studied
in Section 5. In Section 6 it is proved that every totally umbilical generalized CR-

submanifold of a T-manifold is totally geodesic.

2. PRELIMINARIES

Let M be a (2n + s)-dimensional differentiable manifold of class C™ endowed
with an f-structure of rank 2n (cf Yano [13]). The f-structure ¢ is said to be
complemented frame if there exist the structure vector fields {,, a =1,2,...,s and

its dual 1-form 7, such that

2 =-1I 3 G ary a) =Y,
¢ +a§177 ®ba; P(a) =0 (2.1)

Ne(€s) =0dap (6ap: Kroneker delta), ny0¢ =0,
a,8 = 1,2,...,s, where I is the indentity tensor of the tangent bundle T(M)
(cf.Blair [3]). The manifold M is said to have a metric f-structure if there ex-

ists a Riemannian metric g such that

9(¢X,8Y) = g(X,Y) = Y na(X)na(Y), (2:2)
a=1

for X,Y € T(M).
The fundanmental 2-form ® on M is given by

®(X,Y) = g(X,0Y), for X,Y € T(M).
The Nijenhuis torsion Ny(X,Y) of ¢ is defined by
Ny(X,Y) = ¢*[X,Y] + [¢X,4Y] — $[¢X,Y] — $[X,¢Y], for X, Y € T(M).

The manifold M is said to be a K-manifold if the fundamental 2-form is closed and

the metric f-structure is normal (cf. Blair [3]), that is

S
Np(X,Y)+2) dna(X,Y)ée =0, forall X,Y € T(M).

a=1

A K-manifold with dn, = 0,a = 1,2,...,s is called a T-manifold (cf. Blair [3]).
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In a T-manifold, we have (cf. Blair [3])

and
Vxéa=0, a=12,...,s, (2.4)

for all X,Y € T(M), where V is the Levi-Civita connection with respect to metric
g given by eq. (2.2).

Let M be an m-dimensional submanifold isometrically immersed in a T-manifold
M such that the structure vector fields £y, = 1,2,...,s are tangent to the sub-
manifold M. We denote {¢} = span{¢y,...,&} and by {£}* the complementary
orthogonal distribution to {£{} in T(M).

For any X € T(M) we have g(¢X,£,) =0, a=1,2,...,s.
Then we put
X =bX +cX, (2.5)

where bX € {¢}* and cX € T+(M). Thus X — bX is an endomorphism of the
tangent bundle T'(M) and X — ¢X is a normal bundle valued 1-form on M.

Definition 2.1. A submanifold M of a T-manifold M is said to be a generalized
CR-submanifold if

Dy =To(M)(\¢T; (M); z€ M
defines a differentiable subbundle of T (M).

Thus for X € D one has bX = 0. We denote by D the complementary or-
thogonal subbundle to D+ @ {¢} in T(M). For any X € D, bX#0. Also we have
bD = D.

Thus for a generalized CR-submanifold M we have

T(M) = DeD*o{¢}. (2.6)

3. Basic LEMMAS

Let M be a generalized CR-submanifold of the T-manifold M. We denote by g
both the Riemannian metrics on M and M. For each X € T(M) we put

X=PX+QX+ Y na(X)é (3.1)

a=1
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where PX and QX belong to the distribution D and D' respectively. For any
N € T+(M) we put
¢N =tN + fN, (3.2)
where tN is the tangential part of N and fN is the normal part of ¢N.
By using (2.2) we have

9(¢X,cY) = g(¢X,9Y) = g(X,Y) =0, for X € D* and Y € D.
Therefore
g9(¢D*,cD) =0, (3.3)

We denote by v the orthogonal complementary vector bundle to ¢ D+ @cD in T+(M).
Thus we have

TH(M) = ¢D*r@cDov. (3.4)

Lemma 3.1. The morphisms t and f satisfy
t(¢D*) = D+ (3.5)

and
t(cD) C D. (3.6)
Proof. For X € D+ and Y € D,

g(teX,Y) = g(t¢X + f¢X,Y) = g(¢°X,Y) = —g(¢X, ¢Y) = —g(X,Y) = 0.

Also
9(t¢X, €a) = 9(#”X, 6a) = —g(¢X, ¢€a) =0, for a=1,2,...,s.
Therefore t(¢D+) C DL

For X € D*, we have —X = ¢?X = t¢X + f¢X which implies —X = t¢X.
Consequently, D+ c t(¢D+). Hence the relation (3.5) follows. The relation (3.6) is
trivial.

Now we denote by V(resp. V) the Riemannian connection on M (resp. M) with
respect to the Riemannian metric g. The linear connection induced by V on the nor-
mal bundle T (M) is denoted by VL. Then the equations of Gauss and Weingarten
are given by

VxY =VxY +h(X,Y) (3.7)
and
VxN = —-AyX + V‘)L(N (3.8)
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for X,Y € T(M) and N € T+(M), where h is the second fundamental form of M
and Ay is the fundamental tensor of Weingarten with respect to the normal section
N. These tensor fields are related by

for X,Y € T(M) and N € T+(M).
We denote
u(X, Y) = bePY - AcpyX — A¢QyX.
g

Lemma 3.2. Let M be a generalized CR-submanifold of a T-manifold M. Then we
have

P(u(X,Y)) — bPVxY — Pth(X,Y) =0 (3.10)
Qu(X,Y)) - Qth(X,Y) =0 (3.11)
Na(w(X,Y)) =0, for a=1,2,...,s (3.12)

and
h(X,bPY) + VxcPY + Vx%¢QY — cPVxY —¢QVxY — fh(X,Y) =0, (3.13)
for X, Y e T(M).
Proof. For X,Y € T(M) by using (2.5), (3.1), (3.2) and (3.7), (3.8) in (2.3), we have
VxbPY + h(X,bPY) — Acpy X 4+ VxcPY — Agoy X + V4QY
—bPVxY — cPVxY — ¢QVxY — Pth(X,Y) — Qth(X,Y) — fh(X,Y) = 0.

Then (3.10), (3.11), (3.12) and (3.13) follow by taking components on each of the
vector bundles D, D+, {¢} and T+(M) respectively. a

Lemma 3.3. Let M be a generalized CR-submanifold of a T-manifold M. Then we

have

P(tV%N + AjnX — VxtN) = bPANX, (3.14)
Q(tV%N + AjnX — VxtN) = 0, (3.15)
Na(AfnX — VxtN) =0, and (3.16)
R(X,tN) + ¢QANX + VN + cPANX = fVEN (3.17)

for X € T(M) and N € T+(M).
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Proof. For X € T(M) and N € T*(M) by using (2.5), (3.1), (3.2) and (3.7), (3.8)
in (2.3) we get

PYXIN + QVxtN + Y na(VxtN)ea+ h(X,tN) — PA;nX — QApnX

a=1

> Na(AfNX)éa + VXN +bPANX + cPANX + $QANX

a=1

— PtV N — QtV%N — fV%N = 0.

Then (3.14), (3.15), (3.16) and (3.17) follow by taking components on each of the
vector bundles D, D+, {¢} and T (M) respectively. O

Lemma 3.4. Let M be a generalized CR-submanifold of a T-manifold M. Then we
have

h(X,€x) =0, and (3.19)
ANnéq =0, (3.20)

for X e T(M), N e TtH(M), 0 =1,2,...,s.
Proof. The lemma follows from (2.4) by (2.5), (3.1) and (3.7), (3.8). a

Lemma 3.5. Let M be a generalized CR-submanifold of a T-manifold M. Then we
have

ApxY = Agy X (3.21)
for XY € D+,

Proof. For X,Y € D+ and Z € T(M) by using (2.3), (3.7) and (3.9) we obtain
g(A¢XY> Z) = g(h(Z>Y)) ¢X) = g(vZY) ¢X) = —g(qstY,X)
= —g(V20Y,X) = g(Apy Z, X) = g(Asv X, Z),

because Ay is a symmetric tensor with respect to the metric tensor g. Hence the
lemma. follows. O
Lemma 3.6. Let M be a generalized CR-submanifold of a T-manifold M. Then we
have

VeV € DY, for VeD*, and (3.22)

Ve, WeD, for WeD, (3.23)
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fora=1,2,...,s.

Proof. Let us take X =§&,, a=1,2,...,sand V = ¢N in (3.14) where N € ¢D*.
Taking into account that tN = ¢N, fN =0 we get
PV V =PtVg N —bPAnta, o=1,2,...,s (3.24)
Using (3.20), we have
9(PANEa, W) = g(ANEa, W) =0, a=1,2,...,s

for W € D.
Hence (3.24) becomes
PV¢,V = PtVE N. (3.25)
On the other hand, using (3.19) and (3.20) in (3.17) we have
fVEN=0

and hence from (3.25) it follows that
PV V=0, for Ve D% (3.26)

a=12,...,s8
Next from (3.16) we have

n(Ve, V) =0, a=12,...,s, (3.27)

for all V = ¢N € D+, where N € ¢D+.
Hence (3.22) follows from (3.26) and (3.27).
Finally by using (3.1), (3.18) and (3.22), we have

9(Ve W, X) = g(Ve W, PX), for XeT(M) and W€ D.

Thus we have V¢, W € D, for W € D, a = 1,2,...,s and this completes the
proof. O

Corollary 3.1. Let M be a generalized CR-submanifold of a T-manifold M. Then

we have

[V,6a) € D+, for Y e D%, and (3.28)
[X,€) € D, for X eD, (3.29)

a=1,2,...,s.

The above corollary follows immediately from the Lemma 3.4 and 3.6.
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4. INTEGRABILITY OF DISTRIBUTIONS

Theorem 4.1. Let M be a generalized CR-submanifold of a T-manifold M. Then

the distribution D+ is always involutive.

Proof. For X,Y € D' by using (3.18) we get
g([X’ Y]’ga) = Q(VXY, fa) - g(VYX, fa) = g(Xa VYEOL) - g(Ya VX&a) = 0? (41)

forae=1,2,...,s
On the otherhand from (3.10) we have

bPVxY = —PAgy X — Pth(X,Y), for X,Y € D+
and then by using Lemma 3.5 we get
bP[X,Y] =0, for X,Y €Dt (4.2)
As b is automorphism of D, the theorem follows from (4.1) and (4.2). By virtue of
(3.28) and (4.2) the following theorem follows immediately. O

Theorem 4.2. Let M be a generalized CR-submanifold of a T-manifold M. Then
the distribution DX®{¢} is integrable.

Theorem 4.3. Let M be a generalized CR-submanifold of a T-manifold M. Then

the distribution D is involutive if and only if
h(bX,Y) — h(X,bY) + VicX — VxcY € cDov. (4.3)
Proof. For X,Y € D by using (3.18) we have
9([X,Y),&) =0, a=1,2,...,s (4.4)
Also appiying ¢ to (3.13) and then taking component in D+ we have
QVxY = —Qt(h(X,bY) + V%cPY — fh(X, Y)), for X, YeD

and thus
QIX,Y] = Qt(h(Y,bX) ~ h(X,bY) + VycX — VxcY), (4.5)
for X,Y € D.
Hence the theorem follows from (4.4) and (4.5).
Next by virtue of (3.29) and (4.5) we have. a

Theorem 4.4. Let M be a generalized CR-submanifold of a T-manifold M. Then
the distribution D®{¢} is involutive if and only if (4.3) holds good.
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Remark. CR-submanifold is a particular case of generalized CR-submanifold. For a
generalized CR-submanifold M of a T-manifold M, if for X € D, we have ¢X = bX
i. €., cX =0 then M becomes a CR-submanifold of M.

Corollary 4.1 (Calin [5)). Let M be a CR-submanifold of a T-manifold M. Then

the invariant distribution D and D®{£} are involutive if and only if

h(bX,Y) = h(X,bY), forall X,Y € D.

Proof. For X,Y € D, by using (2.3), (2.5) (3.7), (3.8), (3.2) and ¢X = CY =0, we
have
VxbY + h(X,bY) =bVxY +cVxY +th(X,Y) + fR(X,Y). (4.6)
Taking normal components of (4.6), we get
cVxY = h(X,bY) — fh(X,Y),
which implies
c[X,Y] = h(X,bY) — h(Y,bX). (4.7)
For a CR-submanifold M, from (3.4) we have
TH(M) = ¢D*ov.
From (4.7) it follows that
h(X,bY) — h(Y,bX) € ¢D*. (4.8)

On the otherhand, by virtue of Theorem 4.3 and Theorem 4.4 it follows that the
invariant distribution D and D@{£} of a CR-submanifold M are involutive if and
only if

h(X,bY) — h(Y,bX) € v. (4.9)
Hence the corollary follows from (4.8) and (4.9). a

5. GEOMETRY OF LEAVES

Definition 5.1. An integrable ditribution on a manifold is a distribution with the
property that through each point of the manifold passes an integral submanifold
of the dimension equal with the dimension of the fibre of the distribution. It is
proved that there exists a maximal integral manifold (which is connected) passing
through each point. Such maximal integral manifold is called a leaf of the foliation
determined by the integrable distribution.
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Theorem 5.1. Let M be a generalized CR-submanifold of a T-manifold M. Then
the leaves of distribution D*(or DY®{¢}) are totally geodesic in M if and only if
h{X,bZ) € cDov, (5.1)
for X € D+ and Z € Do{¢}
Proof. For X,Y € D+ and Z € D, by using (2.2), (2.3), (3.7)and (3.8) we have |
9(VxY,2) = g(VxY,Z)

= _g(Y’vXZ)

= —g(d)vxz, ¢Y) - Zna(vxz)na(y)

a=1
= —g(¢VxZ,¢Y)
= —9(Vx9Z,¢Y)
= —g(VxbZ + h(X,bZ) — Acz X + VicZ,4Y)
= —g(h(X,bZ) + VxcZ,¢Y). (5.2)

Also for X,Y € D+, using (3.18) we have

9(VxY, &) = —9(Y, V&) =0, (5.3)

fora=1,2,...,s.
Hence the theorem follows from (5.2) and (5.3). 0

Corollary 5.1 (Calin [5]). Let M be a CR-submanifold of a T-manifold M. Then
the leaf of distribution D+( or, D*@®{€}) is totally geodesic in M if and only if

MX,Z)ev, for XeD' and ZeD.

Proof. As a particular case of theorem 5.1 with ¢D = {0}, it follows that the leaf of
the distribution D+(or D+@®{¢}) of a CR-submanifold M is totally geodesic if and
only if
hX,9Z) € v, (5.4)
for X € D+ and Z € D Taking X € D and ¢Z € D in (5.4), we get
MX,Z)ev, for XeD* and ZeD.

Hence the corollary follows. |
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Theorem 5.2. Let M be generalized CR-submanifold of a T-manifold M. Then the
leaves of distribution D (or D&{£}) are totally geodesic in M if and only if

h(X,bY) + VicY € cDav, (5.5)
for X, Y € D.

Proof. For X,Y € D and Z € D+ by using (2.2), (2.3), (2.5), (3.7) and (3.8), we
have

9(VxY,Z) = g(VxY, Z)

= 9(0VxY,62) + Y _ na(VxY)na(2)
a=1

¢V xY,$Z)
VxbY + h(X,bY) — Ay X + VxcY, ¢Z)

h(X,bY) + V%Y, ¢Z). (5.6)

—~ o~ o~ —

g
g
=g
=g

Also by using (3.18), we have

9(VxY, &) = —g(¥,Vxéa) =0, (5.7)
for X, YeDanda=1,2,...,s.
Hence the theorem follows from (5.6) and (5.7). O

Corollary 5.2 (Calin [5]). Let M be a CR-submanifold of a T-manifold M. Then
the leaf of distribution D (or D®{£}) is totally geodesic in M if and only if

X, Y)ev, for X,Y €D.

Proof. Taking ¢cD = {0} in theorem 5.2, it follows that the leaf of the distribution
D(or D@®{&}) of a CR-submanifold M is totally geodesic if and only if

hX,8Y) € v, (5.8)
for X, Y € D. Taking X,¢Y € D in (5.8), we get
(X, Y)ev, for X,Y €D.

Hence the corollary follows. |
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6. TOTALLY GEODESIC GENERALIZED CR-SUBMANIFOLDS
OF A T-MANIFOLD

A submanifold M of a T-manifold M is said to to be totally umbilical if there
exists a vector field HeT+(M) such that A(X,Y) = g(X,Y)H, X, YET(M). H is
called the mean curvature vector field of M. M is called a totally geodesic subman-
ifold if R(X,Y) =0, X, YET(M).

Let M be a generalized CR-submanifold of a T-manifold M. It is obvious that
the structure vector fields &4, @ = 1, 2,..., s are tangents to Mihai [9]. Otherwise
if €, @ =1, 2,... s are normals to M then ¢(T(M))CT (M), for all ze M.

Theorem 6.1. Every totally umbilical generalized CR-submanifold M of a T-manifold
M is totally geodesic.

Proof. Using (3.19) and the fact that M is totally umbilical, we deduce for any
a€{l,2,...,s} and XeT(M), 0 = h(X,&) = 9(X,{x)H, which gives H = 0 and
consequently M becomes totally geodesic. |
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