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INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

KuL Hur, Jun Hut KiM, AND JANG HYUN RyoUu

ABSTRACT. In this paper, we introduce the fundamental concepts of intuitionis-
tic fuzzy Q-neighborhood, intuitionistic Q-first axiom of countability, intuitionistic
first axiom of countability, intuitionistic fuzzy closure operator, intuitionistic fuzzy
boundary point and intuitionistic fuzzy accumulation point and investigate some of
their properties.

0. INTRODUCTION

After the introduction of the concept of fuzzy sets by Zadeh [10], Chang [2] was
the first to introduce the concept of a fuzzy topology on a set X. After that several
researchers (e. g., Pu & Liu [7], Wang [8], Weiss [9], etc.) have investigated many
properties for a fuzzy topology.

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was in-
troduced by Atanassov [1]. Recently, Coker and his colleagues (Coker [3], Coker &
Haydar Eg [4], Giircay, Coker & Eg [5]) introduced intuitionistic fuzzy topological
spaces using intuitioinstic fuzzy sets. Moreover, S. J. Lee & E. P. Lee [6] introduced
the concept of intuitionistic fuzzy points and intuitionistic fuzzy neighborhoods and
investigated the properties of continuous, open and closed mappings in the intu-
itionistic fuzzy topological spaces.

In Section 1, we introduce the concept of “quasi-coincident” and investigate some
of it’s properties. Furthermore, we study some properties of the image and inverse
image for a mapping.

In Section 2, we constuct some intuitionistic fuzzy topologies.
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In Section 3, we introduce the concepts of intuitionistic fuzzy @-neighborhood,
intuitionistic fuzzy local base, intuitionistic Q-first axiom of countabilityintuitionistic
and first axiom of countability and investigate some of their properties.

In Section 4, we introduce the concepts of intuitionistic fuzzy closure operator,
intuitionistic fuzzy boundary point and intuitionistic fuzzy accumulation point and
study some of their properties.

1. INTUITIONISTIC FUZZY SETS AND INTUITIONISTIC FUZZY POINTS

We will list some concepts and results needed in the later sections.
For sets X, Y and Z, f = (f1,f2) : X = Y X Z is called a complez mapping if
fi: X > Y and fo: X — Z are mappings.

Definition 1.1 (Atanassov [1]). Let X be a nonempty set. A complex mapping
A = (pa,va) : X — I x I is called an intuitionistic fuzzy set(in short, IFS) in X if
pa:X = Iand vg: X — I are mappings, and g4 +v4 < 1.

In this case, ug and v4 denote the degree of membership (namely p4(z)) and
the degree of nonmembership(namely v4(z)) of each z € X to A, respectively.

We will denote the set of all the IFSs in X as IFS(X).

It is clear that if ua € IX, then (ua,pq) € IFS(X).

Definition 1.2 (Atanassov [1]). Let X be a nonempty set and let A, B € IFS(X).
(1) Ac Bifand only if pua < pp and v4 > vp.

(2) A=Bifand only if AC B and B C A.

(3) A° = (va, pa)-

(4) ANB = (pa A pp,vaVvp).

(5) AUB = (paV up,vaAve).

(6) [ 1A= (pa,1 - pa)

(7) <>A= (1 - UA,I/A).

Definition 1.3 (Coker [3]). Let {Aqa}aer be an arbitrary family of IFSs in X. Then

(8) NAa = (A raa Vvaa)-
(0) Uda = (V #aa Avaa)-

Definition 1.4 (Goker [3]). 0~ = (0,1) and 1. = (1,0).

Result 1.A (Goker (3] Corollary 2.8). Let A,B,C,D € IFS(X). Then
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(1) AcBandCCD=AuCCBUDand ANCC BND.
(2) AcBand AcC=AcCBnC.

3) AcCand BCC= AUBCUC.

(4) AcBand BCC= AcCC.

(5) (AUB)* = A°N B¢, (AN B)¢ = A°U B-.

(6) AC B= B°C A

(7) (4% = A.

(8)

8) 15, =0,0¢ =1..

Proposition 1.5. Let A, B,C € IFS(X) and let {Aa}aer C IFS(X).
(1) (Idempotent laws) ANA=A, AUA=A.
(2) (Commutative laws) ANB=BNA, AUB=DBUA.
(3) (Associative laws) AN(BNC)=(ANB)NC, AU(BUC)=(AUB)UC.
(4) (Distributive laws) AN (BUC)=(ANB)U(ANC),
AUu(BNC)=(AUB)N(AUC).
(4') (Generalized distributive laws) AN (Uyer Aa) = Uaer(4A N Ag),
AU (Naer 4a) = Naer(A U 4a).
(5) (Absorptive laws) AN(AUB)=A4, AU(ANB)=A.
(6) (DeMorgan's laws) (Maer Aa)® = Uner A% (Uner Aa)® = N45.

Proof. The proofs of (1), (2) and (3) are obvious from Definition 1.2.
(4) AN(BUC) =AN(uBV pe,vs Ave)
= (ua A (uBV pc),vaV (vB Avg))
= ((BaApB)V (pa Apc), (vaVe) AvaVe))
= (paApuB,vaVug)U(uaApc,vaVe)
=(ANB)U(ANC).
By the similar arguments, we can see that AU(BNC)=(AUB)N(AUC).
(#) AU (Naer Aa) = AU (Aaer Bans Vacr V42)
= (14 V (Auer Han) 74 A (Voer v4,))
= (Naer(BaV ra.), Vaer(va Ava,))
= Naer(Ba V baq,va Ava,)
= naer‘(A N Aa).
By the similar arguments, we can see that AN (U,cr Aa) = Uaer (AN Ag)-
(6) (Naer Aa)® = (Aaer Baa> Vaer V4a)® = (Vaer VAar Aser Hao)

= UaEF(VAa’p’Aa) = Uae[‘ Aa
Similarly, we can see that (Uyer 4a)® = Nacr 45 O
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Definition 1.6 (S. J. Lee & E. P. Lee [6]). Let A\,p € I and A+ p < 1 and let
A € IFS(X). Then A is called an intuitionistic fuzzy point (in short IFP)with the
support € X and the value A and the nonvalued p if for each y € X
sw={ &8 513z

In this case, we write A =z, ,)-

An IFP z() ) is said to belong to an IFS A in X, denoted by z(),) € A4, if
A < pa(z) and p 2 va(z).

It is clear that z() ,) = (Tx, 1 = z1-p).

We will denote the set of all IFPs in X as IFp(X).

Result 1.B (S. J. Lee & E. P. Lee [6], Theorem 2.2). Let A € IFS(X). Then
T(au) € A if and only if z) € pg and 21, € 3.

Result 1.C (S. J. Lee & E. P. Lee [6], Theorem 2.3). Let A, B = IFS(X). Then
A C B if and only if () .,y € A implies z(y ,) € B for each z(, ,) € [Fp(X).

Result 1.D (S. J. Lee & E. P. Lee [6], Theorem 2.4). Let A € IFS(X). Then
A= U{x(,\,ﬂ) ST € A}.

Proposition 1.7. Let A,B € IFS(X) and let {Aa}acr C IFS(X).

(1) If:l: (M) €A OT T(x 1) € B, then:c(,\“) € AUB.

(1) If there exists an o € T' such that z(y ) € Aao, then z(5 1) € Uyer Aa
(2) z(Au € ANB if and only if z(x ) € A and z(y ) € B.

(2') z(ap € Naer Aa if and only if (s ) € Aa for each a €T

Proof. (1) Suppose z(,y € A or z(»,) € B. Then, by Result 1.B, A < puq az)
and v4(z) € por A < up(x) and vp(z) < p. Thus A < p ()V,uB()
va(z) Avg(z) < p. So X < paus(z) and vaup(x) < p. Hence zx, € AU B.

(1) Suppose there exists an ag € T' such that z(),) € Aa,- Then, by Result
1B, A < pa,, () and va, (2) < p. Thus A < Ve paq(z) and Agepva, () < p.
Hence z(y 4y € Vper 4o

(2) T € ANB

if and only if z(y ) € (ua A pB,vaV vB)

if and only if z\ € pa A pB,Z1—p € (va VB)°¢ (By Result 1.B)
if and only if A < pa(z) A up(z) and p > va(z) V vp(z)

if and only if A < pa(z), A < pp(z) and p > va(z), p > vB(x)

and
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if and only if A < pa(z),u > va(z) and A < pup(x),u > ve(z)
if and only if z(y ) € A and z() ) € B. (By Result 1.B)
(2') z(a ) € Naer 4a
if and only if z(x u) € (Aser #4ar Vaer VAd)
if and only if z) € Ager a4, and 21y € (Voerva,)¢  (By Result 1.B)

if and only if A < Agcr pa,(2) and g >V o va, (z)
if and only if A < pa () and p > vy (z) for each a € T
if and only if z) € pa, and 21—, € vy, foreacha el
if and only if z(y ) € Aq for each a €T
In general, the converses of (1) and (1)’ do not hold. O

Ezample 1.8. Let X = {z} and let A and B be two intuitionistic fuzzy sets in X
defined as follows :
A(z) = (0.7,0.3) and B(z) = (0.5,0.1).

Then clearly (AU B)(z) = (0.7,0.1). Thus z(ge02) € AUB. But x990 ¢ A
and z(0.6,0.2) ¢ B
Definition 1.9. Let A € IFS(X) and let z(5,) € IFp(X). Then () is said to
be quasi-coincident with A, denoted by z(y g4 if z(y u) ¢ AS, i e, A > va(z) or
p < pa(z).

Remark 1.10. Let py € IX. Then T(xu) 314, 1%) if and only if zagua or p < pa(z).

Definition 1.11. Let A,B € IFS(X). Then A is said to be gquasi-coincident
with B, denoted by AgB, if there exists an z € X such that vp(z) < pa(zx) or

up(z) > va(z).

Proposition 1.12. Let A,B € IFS(X). Then A C B if and only if AGB®. In
particular, T(x ,) € A if and only if (5 ,)JA°.

Proof. AgqB*¢
if and only if ~ (3z € X such that pup(z) < pa(z) or vp(z) > v4(x))
if and only if Vo € X, pa(z) < pp(z) and va(z) > vp(z)
if and only if A C B. a

Corollary 1.13. For any A € IFS(X). AgA°.

Proposition 1.14. Let {Ag}aer C IFS(X) and let A,B € IFS(X). Then:
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(1) AC B if and only if 25 ,)gB for each z( )9 A

if and only if x(,\,p)aA for each x5 ,,)@B.
(2) If there exists an ap € T' such that x(5 4)qAag, then T(A, u)q(Uqer)-
(3) AgB if and only if there exists an () € A such that z(y ,)9B.

Proof. (1)(=): Suppose A C B and let z(y ,)gA. Then A > v4(z) or p < pa(z).
Since A C B, ua < up and vg > vp. Thus pa(z) < pp(z) and va(z) > vp(z). So
A > vp(z) or u < pp(x). Hence z(y ,)9B.

(<): Suppose the necessary condition holds. Assume that A ¢ B. Then there
exists a y € X such that pa(y) > up(y) or va(y) < va(y). Let A\,p € I with
A+ u < 1 such that v4(y) < A < vp(y) or up(y) < p < pa(y). Then y ,)gA. By
the hypothesis, y(» ,)¢B. Thus A > vp(y) or p < pp(y). This contradicts the fact
that A < vp(y) or up(y) < pu. Hence A C B.

It is clear that 2y ,)¢B for each z(y ,,)gA if and only if 2y ,)qA for each z() ,)gB.

(2) Suppose there exists an ap € I such that () ,)gAa,- Then A > v4, (z) or
B < PAg, (@) Thus A > A,crva, (@) or b < Ver paa ().

(3)(=): Suppose AgB. Then there exists an € X such that vg(z) < pa(z) or
up(z) < va(z).

Case (i): Suppose vp(z) < pa(z). Then clearly there exists a A € I such that
vp(z) < A < pa(z). Since pa(z) +va(z) < 1, A < 1 —vg(z). Then there exists
ap € Isuchthat A <1—p<1-va(z) Thus u > va(z). So z(),) € A. Since
A > v(z), Ty u)9B.

Case (ii): Suppose pp(z) > va(z). By the similar arguments as the proof of
Case(i), we can see that the necessary condition holds.

(«): It is obvious from Definition 1.11. O

Definition 1.15 (Coker [3]). Let X and Y be nonempty sets and let f : X - Y a
mapping. Let A € IFS(X) and B € IFS(Y).

(1) The preimage of B under f, denoted by f ~1(B), is the IFS in X defined by
F7YB) = (f (i), f(vB)),

where f~\(up) = pp o f and f~L(vs) = vp o f.
(2) The image of A under f, denoted by f(A), is the IFS in Y defined by

F(A) = (f(pa), f(vB)),

where for each y € Y



INTUITIONISTIC FUZZY TOPOLOGICAL SPACES 249

z€f~1(y) zef~1(y)

O~ if f~Hy) =
Result 1.E (Coker (3], Corollary 2.10). Let A € IFS(X),{Aa}acr C IFS(X), let
B e IFS(Y), {Ba}acr C IFS(Y) and let f : X — Y a mapping. Then
(1) Ax C Ap = f(4a) C f(Ap).
(2) B, C Bg = f—l(Ba) C f—l(BB).
(3) AcC f7Y(f(A)). If f is injective, then A = f~1(f(4 ))
(4) f(f~Y(B)) C B. If f is surjective, then f(f~1(B)) =
(5)
(6)
(7)
(8)

z), valz ‘iff‘1 #0,
) = {( Vo opa@), A va@) #57@)

f

[ (UaeF Ba)) = Uger FH(Ba)-
6 f 1(na€F a)) - naEF f_l(Ba)'
N f
f

8

(Uaer 4a)) = Uaer f(4a)-

(Maer Ae)) € Naer F(4a).
If f is injective, then f((Aqa)) =) f(4a)
(9) f711~) = 1., F71(0~) = 0.
10) f(1.) = 1. if f is surjective.
11) f(0~) =0..
12) [f(A)]° C f(AC) if f is surjective.
13) f-1(B°) = [f (B))"

Proposition 1.16. Let A € IFS(X) and let f : X — Y a mapping. If f is bijective,
then [f(A)]° = f(A°).

Proof. [f(A)]° = f(fHf(A)]°) (by Result 1.E(4))
= f(f(f(A))° (by Result 1.E(13))
= f(A°) (by Result 1.E(3)). O

Proposition 1.17. Let f : X — Y be a mapping and let A € IFS(X), B €
IFS(Y). Then

(1) f@aw) € IFp(Y) and f(z(y ) = [f(2)](p) for each z(, ) € IFp(X).
(2) If f is injective and y(» u) € IFp(f(X)), then
FHyow) = F @ € TFp(X).
In general, f‘l(yo\yu)) needs not be an IFP in X for each y(, ,) € IFp(Y).

(3) If T(x,u) € A, then [f(m)]()\,p.) € f(A)
(4) If [f(x)](/\,p) € B) then x()\,u) € f_l(B)
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Proof. (1) Let y € Y. Then:
y’f(Z(,\_#))(y) = f(/J'w(A,,,))(y) = v l‘z()\ ,,)

zef-1
A if z=u1,
= {0 otherwise,
and
Vo) ¥) = F(Vep ) @) = /\ Vo (7)
zef~1(y)
" ifz =z,
- {1 otherwise.

Hence f(z(xu) = [£(@)]am:
{2) By the hypothesis, there is a unique z € X such that y € f(z). Let z € X.

Then

Hy- L(y(a, “)) f 1 Ny(,\,,,))(z) = Hyow (f(z))
{A it f(z) =y = f(a),

0 otherwise,

and
l/f_l(y()\,u))(z) = f_l(yy(A,u))(z) = Vy(,\,“)(f(z))
:{# if f(z)=y=f(a),

1 otherwise.

Hence [~ (y( ) = T = FHH) o)
The proofs of (3) and (4) are obvious. O

The following is the immediate result of Definition 1.15:

Proposition 1.18. Let f: X - Y and g: Y — Z be mappings.

(1) If B€ IFS(Z), then (go f)~(B) = f (g~ "(B)).
(2) If A€ IFS(X), then (g o f)(A) = g(f(A))-

Proposition 1.19. Let f : X — Y be a mapping, let (), € IFp(X) and let
A€eIFS(X), Be IFS(Y).

(1) If f(z(pp))aB, then x5 af " (B).
(2) If z(x 094, then f(z(nu)af(A4), i€, [f(@)]owaf(4).
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Proof. (1) By Definition 1.8, A > vp(f(z)) or p < pp(f(z)). Thus, by Def-
inition 1.15(1), A > f~}(vB)(z) or p < f~'(ug)(z). Hence, by Definition 1.9,

2(x,uaf " (B).
(2) By Definition 1.8, A > wa(z) or p < pa(z). We will show that A >

f(va)(f(2)) or p < f(pa)(f(z)). By Definition 1.15(2),

fua)(f@)= N  val@)=va(z)
zef~1(f(z))
and

Fu(f@) =\ nale) = pal@).
sef~1(f(@))

Thus A > F(ua)(f(@)) or 4 < f(ua)(f()). Hence f(z(r,) = [[@]pnaf (4). O

Definition 1.20. Let A € IFS(X) and let B € IFS(Y). Then the product of A and

B denoted by A x B, is an IFS in X x Y, defined as follows: for each (z,y) € X XY,
paxs(z,y) = pa(z) App(y) and vaxp(z,y) = valz) V ve(y).

Hence A x B = (ua A up,vaV vp).

The product mapping fi1 X fo : X1 Xx Xo = Y1 x Y3 of mappings f1 : X1 — Y1 and
fo : Xo — Y5 is defined by (f1 x f2)(z1,22) = (fl(wl),f2($2)) for each (z1,z2) €
X1 x X3. And, for a mapping f: X — Y, the graph g: X — X x Y of f is defined
by g(z) = (z, f(z)) for each z € X.

Proposition 1.21. Let f; : X; = Y; (i = 1,2) be mappings.

(1) If A; € IFS(X;), then (f1 X f2)(A1 x A2) C fi(A1) x fa(A2).

(2) If B; € IFS(Y;), then (fi x f2)7}(B1 x Bz) C f(B1) x f;(Ba).
Proof. Since

(f1 % f2)(A1 x Az) = ((f1 X f2)(Bayxas), (f1 X f2)(¥a;x4,))
and
f1(A1) x fa(A2) = (fi(ma,) % f2(1a,), fi(va,) X fa(va,)),
it is enough to show that
(f1 % f2)(paixaz) < fi(pa,) X f2(pa,)

and
(fi X f2)(Vayxaz) 2 fi(va,) X fa(pas)-
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Let (y1,y2) € Y1 x Y2 and suppose (f1 x f2)"(y1,y2) # @. Then:

(f1 x f2)(Bayxa)(y1,92) = V [Ayx Az (21, T2)
(z1,22)€(fix f2)"Hy1,y2)
= v (4, (1) A pay(22)]

(z1,22)€(f1x f2)~H(y1,y2)

S[ V /LAI(M)J/\[ V qu(fL‘z)J

z1€f ) z2€f5 (y2)
= filpa,)(y1) A f2(1a,)(y2)

= [fi(pa,) x f2(pa,))(y1, 92)-
Thus (f1 x f2)(#a,xaz) < fi(pa,) X fa(pa,). On the other hand,

(f1 X f2)(Va,x4,) (Y1, 92) = A VAix 4, (T1, T2)
(z1,x2)€(f1x f2) " (y1,92)

_ /\ [va, (1) V va,(z2))

(z1,22)€(f1x f2) " Hy1,y2)

z[ A uAl(ml)]V[ A qu(mg)]

zrefi M) z2€f; H(ya)

= filva,) (1) V f2(va,)(y2)
= [f1(va,) x fa(va,)(1, 32)-
Thus (f1 X f2)(Va;xa,) = fi(va,) X fa(va,). This completes the proof. o

Proposition 1.22. Let g: X — X XY be the graph ofd mapping [ : X = Y. If
A€ IFS(X) and B IFS(Y), then g"}(A x B) = An f~}(B).
Proof. Let x € X. Then
97 (A x B)(z) = (A x B)[g(z)) = (4 x B)(z, f(z))

= A(z) A B(f(z)) = A(z) A fH(B)(2)

= (ANf7H(B))(z).
Hence g1(A x B) = AN f~1(B). a
Proposition 1.23. Let A € IFS(X) and let B € IFS(Y). Then

(Ax B)=(A°xY)U (X x B°).
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Proof. (A°xY)U (X x B¢) = (vaApy,paVvy)U(px Ave,vx V uB)
= (I/A/\l,p,AVO)U(]./\VB,OVuB)
= (va, p4) U (vB, 1B)
= (vaVup,puaApB)
— (Ax B). O

Definition 1.24. Let A € IFS(X). Then the set
{re X :pa(z) >0 and vu(z) <1}
is called the support of A and denoted by S(A) or Ag...

Proposition 1.25. Let {Ay}aer C IFS(X). Then

(1) S(UaeI‘ Aa) = UaGF S(Aa)'
(2) S(Naer 4a) = Naer S(4a)-

Proof. (1) z € S(Uger 4a)
if and only if py__ 4,(z) >0and 1y  4,(z) <1
if and only if \/ cp 4, (2) > 0 and A cprva,(z) <1
(Since pa, (z) + va,(z) < 1)
if and only if there exists an o € I' such that pa,(z) > 0 and v4 (z) < 1
if and only if there exists an a € I such that z € S(Aa)
if and only if z € |Juer S(Aa)-

(2) TE S(nael‘ Aa)

if and only if B er Aa (z) > 0 and YNaer Aa () <1

if and only if A cppa,(x) >0and V pva,(z) <1

if and only if pua,(z) > 0 and vg, (z) < 1, for each a € T

if and only if z € S(Ay) for each a € T

if and only if z € (e S(Aa)- 0

2. SOME PROPERTIES OF INTUITIONISTIC FUZZY TOPOLOGICAL SPACES

Definition 2.1 (Coker [3]). Let X be a nonempty set and let T C IFS(X). Then
T is called an intuitionistic fuzzy topology (in short, IFT) on X if it satisfies the

following axioms :

(T1) 0,1 € T.
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(T2) Gi1NGe € T for any G1,G2 € T.
(T3) UG» € T for any {Gr}rer C T.

In this case, the pair (X,T') is called an intuitionistic fuzzy topological space(in
short, IFTS) and each member G of T is called an intuitionistic fuzzy open set(in
short, JFOS) in X.

It is clear that if (X,T¢) is an fts in the sense of Chang, then (X,T) is an IFTS,
where T = {A = (pa,p%) : #a € Tc} (See Example 3.2 in Coker & Es [4]).

Ezample 2.2. (1) Let X be a non-empty set and let Z = {0.,,1.}. Then clearly 7 is
an IFT on X. In this case, Z is called the intuitionistic fuzzy indiscrete topology(in
short, IFIT) on X and the pair (X,Z) is called an intuitionistic fuzzy indiscrete
space(in short, IFIS).

(2) Let X be a nonempty set and let D = IFS(X). Then D is an IFT on X. In
this case, D is called the intuitionistic fuzzy discrete topology(in short, IFDT) on X
and the pair (X, D) is called an intuitionistic fuzzy discrete space(in short, IFDS).

(3) Let (X,T¢) be an fts in the sense of Chang such that T¢ is not indiscrete.
Then we can construct two IFTs on X as follows:

(a) T' = {0~, 1} U {(16,0) : G, € To},
(b) T? = {0~,1.} U{(0, u&) : pg, € Tc},
where T = {0,1} U {ug, : @ € I'} (See Example 3.5 in Coker [3]).

Result 2.A (Goker [3], Proposition 3.6). Let (X,T) be an IFTS. Then we can also
construct two IFTs on X in the following way:
(a) Tox = {[1G: G € T} = {{uc, ) : G € T,
(b) T2 ={()G:Ge T} ={(vé,vg): Ge T}

Remark 2.3 (Goker [3], Remark 3.7). Let (X,T) be an IFTS. Then:
(a) T1 = {uc : G € T} is a fuzzy topology on X in the sense of Chang.
(b) T = {v§ : G € T} is a fuzzy topology on X in the sense of Chang.

Hence we may conclude that (X, T}, T3) is a fuzzy bi-topological space.

Definition 2.4 (Coker [3]). Let (X,T) be an IFTS. Then (X,T) is called an IFTS
in the sense of Lowen if for any A, p € T with A+ pu <1,Cy, = (A p) €T.

It is clear that if (X, T) be an IFTS in the sense of Lowen, then we can construct
two fuzzy topologies T3 and T3 on X in the sense of Lowen as follows (See Example
3.11 in Goker (3]):
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(8) Ty = {ug : G € T).
(b) Ty ={vg:GeT}

Definition 2.5 (Coker (3]). Let (X,T) be an IFTS and let A € IFS(X). Then A
is called an intuitionistic fuzzy closed set (in short, IFCS) in X if A° € T.

Notation 2.6. Let X be an IFTS. Then:

(a) IFO(X) denotes the set of all IFOSs in X.
(b) IFC(X) denotes the set of all IFCSs in X.

Proposition 2.7. Let X be an IFTS. Then the following conditions hold :
(1) 1., 0. € IFC(X)

(2) If Ay, Ay € IFC(X), then A1 U Ag € IFC(X).

(3) f ACIFC(X), thenNA € IFC(X).

Proof. (1) 15, = (0,1) = 0. € IFO(X) and 0¢, = (1,0) = 1. € IFO(X). So
1.,0. € IFC(X).
(2) Suppose Ay, A2 € IFC(X). Then A§, A5 € IFO(X). Then

Af N AS = (A1 U A2)° € IFO(X).

So Aj U Ap € IFC(X).
(3) Suppose A C IFC(X). Then A € IFC(X) for each A € A. Then

A° € IFO(X)

for ea.Ch A c .A- SO UAEAAC € IFO(X) and UAE.AAC = (nAE.AA)c = (ﬂA)C.
Hence (A € IFC(X). O

Proposition 2.8. Let X be an infinite set and let T = {U € IFS(X):U = 0., or
U¢ is finite}, where A € IFS(X) is finite if and only if S(A) = {x € X : pa(z) >0
and va(z) < 1} is finite. Then T is an IFT on X. In this case, T is called the
intuitionistic fuzzy complement topology or intuitionistic fuzzy cofinite topology (in
short, IFCFT) on X and denoted by Cofrr(X).

Proof. From the definition of 7', it is clear that 0.,1. € T. Let U,V € T.

Case (i): Suppose U = 0., or V =0.. Then clearly UAV =0.. SoUNV eT.

Case (ii): Suppose U # 0., and V # 0.. Then U€ and V¢ are finite.

Thus S(U€) and S(V*¢) are finite. Thus S(U¢) U S(V*¢) is finite. By Proposition
1.25(1) and Proposition 1.5(6), S(U°U V¢) = S[(U N V)] is finite. So (UNV)® is
finite. Hence UNV € T. Let {Ug}aer C T
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Case (i): Suppose U, = 0., for each a € I'. Then clearly Uaer Ua = 0~. Thus

User Ua € T.
Case (ii): Suppose there exists an o € T such that U, # 0. Let

IM={ael:U, #0.}.

Then clearly US is finite for each @ € I'. Thus S(US) is finite for each o €
[". So Naer S(Ug) is finite. By Proposition 1.25(2), and Proposition 1.5(6),
S(Naer Us) = Sl(Uaer Ua)?] is finite. Thus (| J e Ua)© is finite. So

UUaerT

o€l
and hence Uaer U, € T. This completes the proof. O

By the similar arguments as proof of Proposition 2.8, we can easily show the

following result:

Proposition 2.9. Let X be an infinite set and let T = {U € IFS(X) : U =0~ or
U¢ is countable}, where A € IFS(X) is countable if and only if S(A) = {z € X :
pa(z) > 0 and va(z) < 1} is countable. Then T is an IFT on X.

In this case, T is called the intuitionistic fuzzy countable complement topology or
intuitionistic fuzzy cocountable topology (in short, it IFCCT) on X and denoted by
Coc IF (X )

It is clear that if X is a finite set, then Cofrr(X) = Cocip(X) = D. Moreover,
COC] F(N) =7D.

Proposition 2.10. Let X be a non-empty set, let z(y ) € IFp(X) and let

T, ={U€lIFS(X):U =0~ or z(,, €U}

T(x,u)
Then Tm(w) is an IFT on X. In this case, Tz( ) 1s called the included intuitionistic

fuzzy point z(y ) topology on X.

Proof. From the definition of Ty, ), it is clear that 0,1 € Ty, , . Let
UV eT,

Xu)*
Case (i): Suppose U =0, or V =0.. Then UNV =0.. ThusUNV € T3, ,.
Case (ii): Suppose U # 0. and V # 0.. Then x5,y € U and () ) € V. Thus,
by Proposition 1.7(2), zx ) €UNV. So UNV €T, -
Let {Ua}aer C Togy -
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Case (i): Suppose Uy = 0~ for each a € I'. Then {J,cp Uq = O~. Thus
U Ua € T‘”(A,n)'
a€el
Case (ii): Suppose there exists an a € I such that U, # 0~. Then T(ap) € Ua
for some oo € T'. By Proposition 1.7(1'), z(x 4y € Uger Uar S0 Uger Ua € T

T(ap)”

This completes the proof. O

Definition 2.11. Let X contain only two elements. Then the included intuition-
istic fuzzy point topology on X is called an intuitionistic fuzzy Sierpinski topology.
Clearly it is the generalization of the ordinary one.
Proposition 2.12. Let X be a non-empty set, let x(x ) € IFp(X) and let

Tf()"u) = {U € IFS(X) :U=1. or T € UC}

Then Tg( )
fuzzy point x(y ) topology on X.

is an IFT on X. In this case, TE(M) 1s called the excluded intuitionistic

Proof. From the definition of Tz, ,, it is clear that 0,1, € T3, ,,. Let
UV e TE(M).

Case (i): Suppose U =1, or V=1.. Then UNV =1.. ThusUNV € Tx, .

Case (ii): Suppose U # 1. and V # 1.. Then z() ,) € U® and z() ,) € V°©
By Proposition 1.7(1) and Proposition 1.5(6), z(x ) € USUV® = (UN V)% Thus
Unv €T, ,, Let {Ua}aer C Tz -

Case (i): Suppose there exists an a € I such that Uy = 1. . Then {J,cp Ua = 1~.
Thus (Jyer Ua € TE(M).

Case (ii): Suppose U, # 1~ for each o € T'. Then z(, ,) € U§ for each o € T'. By
Proposition 1.7(2) and Proposition 1.5(6), z(x ) € Naer Us = (Naer Ua)®: Thus
Uaer Ua € Tz, ,,- This completes the proof. a

We obtain the similar result as Proposition 2.10:

Proposition 2.13. Let X be a non-empty set, let A€ IFS(X) and let Tqp = {U €
IFS(X):U=0.0r ACU}. ThenTy4 is an IFT on X. In this case, T4 is called
the induced intuitionistic fuzzy set A topology on X.

Proof. Clearly 0,1~ € T4. Let U,V € T4.
Case (i): Suppose U =0~ or V =0.. Then UNV =0.. Thus UNV € Ty4.
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Case (ii): Suppose U # 0. and V # 0.. Then A C U and A C V. Thus
ACUNV.SoUNV e€Ty. Let {Us}laer C Ta.
Case (i) Suppose U, = 0. for each o € T'. Then |J,cp Aa = 0~. Thus

U Ay € Ta.
a€l
Case (i) Suppose there exists an a € I" such that U, # 0~. Then A C U,. Thus
A C User Ve
So Uger Ua € Ta. This completes the proof. ]

Also we obtain the similar result as Proposition 2.12:

Proposition 2.14. Let X be a non-empty set, let A € IFS(X) and let
Tg={UelFSX):U=1. or ACU}.

Then Ty is an IFT on X. In this case, T is called the excluded intuitionistic fuzzy
set A topology on X.

3. INTUITIONISTIC FUZZY NEIGHBORHOODS AND
INTUITIONISTIC Q-NEIGHBORHOODS

Definition 3.1. Let (X,T) be an IFTS, let A € IFS(X) and let z(xu) € [Fp(X).

(1) A is called an intuitionistic fuzzy neighborhood (in short, IFN) of z(y, (cf.
S. J. Lee & E. P. Lee [6]) if there is a B € T such that z(5 ,) € B C A. The
family of all the IFNs of () ,,) is called the system of IFNs of z(, ,) and denoted
by N(w()\,u))'

(2) A is called an intuitionistic Q-neighborhood(in short, IQN) of z(y ,,) if there is a
B € T such that z() ,)gB C A. The family of all the IQNs of z(, ,, is called the
system of IQNs of z(, ,) and denoted by Nio (T(aw)-

Result 3.A (S. J. Lee & E. P. Lee [6], Theorem 2.6). Let X be an IFTS and let
A € IFS(X). Then A € IFO(X) if and only if A € N(z(, ) for each z(y ) €
IFp(X).

We obtain the similar one as Result 3.A using Definition 3.2:

Proposition 3.2. Let (X,T') be an IFTS and let A € IFS(X). Then A € T if
and only if A € Nig(x(x ) for each x4y € IFp(X) with (5 ) € A.
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The following is the immediate result of Definition 3.1:

Proposition 3.3. Let (X,T) be an IFTS and let x5 ) € IFp(X).

(1) If U € N(z(a p))[resp.U € N1g(z(a,))], then z(y ) € Ulresp. z(y ,)qU].

(2) If U € N(z(»p)) [resp. U € Nig(z(p)] and U C V, then V € N (x5 ,,))[resp.
V € Nig(z(nm)]-

(3) If U,V € N(zpw)lresp. U,V € Nrg(zpw)l, then UNV € N(z(y)[resp.
UNnV e Nig(Ew)l-

(4) If U € N(z(y w))lresp. U € Nig(z ()], then there ezists a V € N(z(y ) [resp.
V € Nig(z(a )] such that V C U and V e Ny p))lresp. V€ Nig(yov,un)l
fO’I" each Y ) € IFP(X) with Yo ) eV [resp. y(A/’“/)qV].

Proposition 3.4. If for each x(y,) € IFp(X), B(z(xu)lresp. Brg(z(u)] s a
family of IFSs in X satisfying the conditions (1),(2), (3) and (4) of Proposition
3.3, then there exits a unique IFT T on X such that for each x() ,) € IFp(X),
B(zayu)) = N(z(npuy) [resp. Bro(zoaw) = Nig(zu)] in (X,T).

Proof. Let T = {U € IFS(X) : U € B(z(y,)) for each z(y ) € U} [resp. T =
{U € IFS(X) : U € Big(z(s,)) for each z() ,)qU}]. Then we can easily check
that T is an IFT on X. Moreover, we can see that B(z(y ) = N(z( ) [resp-
Brg(z(a ) = N1g(z(a )] in (X, T) for each z(y ) € IFp(X). ]

Definition 3.5. Let (X, T) be an IFTS and let z() ,) € IFp(X). Then B cT

Z(x, u)
is called a local base at z(y ,,y if it satisfies the following conditions:
(1) If B € By, ,,, then z(, ) € B.

2) If U € T and z() ,) € U, then there exists a B € B, such that B C U.
{(Am)

(Ap)
Definition 3.6. Let (X,T) be an IFTS and let () ,) € [Fp(X).

(1) B,y € N(z(rp) is called an intuitionistic fuzzy neighborhood base(in short,
IFNB) of N(z(y ) if for each A € N(z(y ), there is a B € By, ,, such that
B C A

(V') Bz 1@ C Nig(z(a ) is called an intuitionistic fuzzy Q-neighborhood base(in
short, IQNB) of N1q(z(s ) if for each A € N1g(z(s ) thereisa B € Bz IQ
such that B C A.

(2) (X,T) is said to satisfy the intuitionistic Q-first aziom of countability or to be
IQ — Cy if each IFP Z(ap) in X has a countable IQNB.



260 Kut Hur, Jun Hul KiM, AND JANG HYUN Ryou

(2") (X,T) is said to satisfy the intuitionistic first aziom of countability or to be IC;
if each IFP z(, ,) in X has a countable IFNB.

Proposition 3.7. If (X,T) is ICy, then it is IQ — C.

Proof. Let z(y ,) € IFp(X). Consider two sequences {\, }ren in [0, A) and {pn}nen
in (g, 1] such that limA, = X and limy,, = u, respectively. Then

(4, An) € IFP(X)

for each n € N. Since X is ICy, for each n € N, there exists a countable intuitionistic
fuzzy open neighborhood base By, of z(,, »,) (there is evidently no loss of generality
in assuming the openness of each member of B,). Let B, € B, for each n € N.
Then z(,, »,) € By for each n € N. Thus s < pp,(z) and A, > vp,(x) for each
n € N. So u < ug,(z) or A > vp, (z).

Hence z () ,,)¢ B, for each n € N. Let B be the collection consisting of all the mem-
bers of all B,. Then clearly B is a family of intuitionistic fuzzy open Q-neighborhoods
of z(5 ). Let A € Nig(z(s ). Then X > v4(z) or p < pa(z). Since A, € [0, )
and p, € (p,1] for each n € N, there exists an m € N such that p, < pa(z) and
Am > va(z).

Thus z(,,, 1) € A and A is an intuitionistic fuzzy open neighborhood of z(y,, »..)-
So there exists a B € B, C B such that B C A. Moreover, () ,)gB. This shows
that B is a countable intuitionistic Q-neighborhood base of z(y ,,).

Hence X is IQ — Cj. a

4. CLOSURES, INTERIORS AND DERIVED SETS OF SETS.

Definition 4.1 (Coker [3]). Let (X,T) be an IFTS and let A € IFS(X). Then
the intuitionistic fuzzy interior (in short, IFI), intA and the intuitionistic fuzzy
closure(in short, IFC), clA of A are defined by:

intA:U{GGT:GCA} and clA=ﬂ{F:F°eT and A C F}.
It is clear that intA is the largest IFOS contained in A and clA is the smallest
IFCS containing A. Moreover A € IFC(X) if and only if clA = A.

Definition 4.2. Let (X,T) be an IFTS, let A € IFS(X) and let z(5 ,) € A. Then
Z(x,) is called an intustionistic fuzzy interior point(in short, IFIP) of A if there is a
U € N(x(,)) such that U C A.
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It is clear that intA = H{z(, ) € IFp(X) : 2(x ) is an IFIP of A}.
The following is the immediate result of Definitions 4.1 and 4.2:

Proposition 4.3. Let X be an IFTS and let A € IFS(X). Then T(au) € intA of
and only if there is a U € N(z ) such that U C A.

Corollary 4.4 (S. J. Lee & E. P. Lee [6], Theorem 2.6). Let X be an IFTS and let
Ae€IFS(X). Then A€ IFO(X) if and only if A € N(z ) for all z(y ) € A.

Proposition 4.5. Let X be an IFTS and let A € IFS(X). Then T\ € clA if
and only if for each U € Nig(z(» ), UqA.

Proof. zy ) € clA
if and only if A < pp(x) and p > vp(z) for each F € IFC(X)
if and only if puy(z) < pand vy(z) > A for each U € IFO(X) with U = F° C A4¢
if and only if U ¢ A€ for each U € IFO(X) with uy(z) > p or vy(z) < A
if and only if UqA for each U € Nyg(z(s ,,))(By Definition 1.9 and Proposition
1.12). O

Definition 4.6. Let X be an IFTS and let A € IFS(X). Then T € TFp(X)
is called an intuitionistic fuzzy adherence point(in short, IFAP) of A if for each
Ue NIQ((L’(A,H)), UqA.

Form Proposition 4.4 and Definition 4.5, it is clear that clA is the union of all
the IFAPs of A.

Result 4.A (Coker [3], Proposition 3.15). Let X be an IFTS and let A € IFS(X).
Then:

(a) clA® = (intA)¢

(b) intA® = (clA)".

Corollary 4.A. clA = (intA°)° and intA = (clA°)°.

Result 4.B (Coker (3], Proposition 3.16). Let X be an IFTS and let 4,B ¢
IFS(X). Then the following properties hold:

(1) intA C A.

(1'y A C clA.

(2) If A C B then intA C intB.

(2') If A C B, then clA C clB.
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(3) int(intA) = intA.

(3') cl(cld) = clA.

(4) int(AN B) =intANintB.
(4") c{AUB) =clAUclB.
(6) intl. = 1..

(5') cl0. = Ow.

Definition 4.7. A mapping f : IFS(X) — IFS(X) is called an intustionistic fuzzy
closure operator on a set X if it satisfies the following Kuratowsk: closure axioms :
(1) £(0~) =0~

(2) AC f(A) for each A € IFS(X).

(3) f(f(A)) = f(A) for each A € IFS(X).

(4) f(AUB) = f(A)U f(B) for any A,B € IFS(X).

It is clear that in an IFTS X, the mapping f : IFS(X) — IFS(X) defined by
f(A) = clA is an intuitionistic fuzzy closure operator on X.

Proposition 4.8. Let f be an intuitionistic fuzzy closure operator on a set X, let
F={Ae€lIFS(X): f(A)=A} and let T ={U°:U € F}. Then T is an IFT on
X such that f(A) = clrA for each A € IFS(X). In this case, T is called the IFT
induced by f.

Proof. Clearly f(0.) = O~. Thus 1. = 0% € T. Also f(1.) = 1~. Thus 0.
1¢, € T. Suppose A,B € T. Then A€, B¢ € F. Thus f(A¢) = A® and f(B¢) = B°.
So f((AN B)) = f(A°U B®) = f(A°)U f(B®) = A°U B® = (AN B)° € F. Hence
ANBeT.

Now suppose {Ag}aer C T. Then AS € F for each o € T'. Thus f(AS) = AS for
each a € T'. Since f is an intuitionistic fuzzy closure operator on X, NAS C f(NAS).
Moreover f(NAS) C NAS. Thus f(NAS) = AS. So NAS € F and thus UA, € T.
Hence T is an IFT on X. Futhermore, we can see that for each A € IFS(X),
f(A) = clrA. This completes the proof. O

Definition 4.9. Let X be an IFTS and let A € IFS(X). Then z(y,) € IFp(X)
is called an intuitionistic fuzzy boundary point (in short, IFBP) of A if z() ,) €
clA N clA°. The union of all the IFBPs of A is called a boundary of A and dented

by b(A).
It is clear that b(A4) = clANclA’.



INTUITIONISTIC FUZZY TOPOLOGICAL SPACES 263

The following is the immediate result of Definition 4.9.
Proposition 4.10. For each A € IFS(X), AUDb(A) C clA.
However, the inclusion cannot be replaces by an equality by Example 4.11.

Ezample 4.11. Let z € X, let T = {1~,0~,x(%,%)} and let A = (2.1 consider the
IFP (s 1y in X. Then N[Q(:L‘(%’%)) = {IN,m(%,%)}. Moreover, 1..qA and 211
So, by Proposition 4.4, (3,1 € clA. On the other hand, T(3 1 ¢ A and T
Thus z(3 1, ¢ b(A). Hence (s 1y ¢ AUD(A).

o
Definition 4.12. Let X be an IFTS and let A € IFS(X). Then z(y ) € IFp(X)

is called an intuitionistic fuzzy accumulation point of A if it satisfies the following

conditions :

(i) z(au) is an IFAP of A.
(ii) If z(5 ) € A, then for each U € Njg(z(» ), U and A are quasi-coincident at
some point y € X such that y # z.

The union of all the intutionistic fuzzy accumulation points of A is called the
derived set of A and denoted by d(A).
It is clear that d(A) C clA.

Proposition 4.13. clA = AUd(A4).

Proof. Let Q= {z() ) : T(r ) is an [FAP of A}. Then, by Corollary 5.4, clA = USQ.
Since x(y u) € O, either x(y 4) € A or z(,) ¢ A. If 25 ) ¢ A then by Definition
4.11, z(5 ) € d(A). SoclA C AUd(A). By Definition 4.11, it is clear that AUd(A) C
clA. Hence clA = AU d(A). a

Corollary 4.14. Let A€ IFS(X). Then A € IFC(X) if and only it d(A) C A.

Proof. A € IFC(X) if and only if A = clA if and only if d(4) C A by Proposition
4.13. a

Proposition 4.15. Let X be an IFTS and let A = x(y ). Then:
(1) For eachz #y € X. (clA)(y) = (d(A4))(y)-

(2) If (clA)(z) > (A, ), then (clA)(z) = (d(A))(z).

(3) (clA)(z) = (A, p) if and only it (d(A))(z) = O~.
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Proof. 1) By Proposition 4.12, clA = AUd(A). Thus pga = pa V Ba(a) and
VA = VA A Vga)- Since A = x(y ) and y # z, A(y) = (0,1), i. e, pa(y) = 0 and
va(y) = 1. Then:

paa(y) = (LaV paa)) @) = pa(y) vV eaa)y ) = 0V pyay(y) = paa) ()

and

vaa(y) = (va Avaa))(y) = valy) Avaay(y) = LA vgay(y) = vaa) ().

Hence (clA)(y) = (d(4))(y)-

(2) Suppose (clA)(z) > (a,8). Then pqa(z) > @ and vyu(z) < S. By Propo-
sition 4.12, Since clA = AUcl(A), paa = pa V paca) and vaa = va A vgeay. Since
A=z, pa(z) = @ and v4(z) = B. Thus

te1a(@) = pa(z) V paa)(z) = @V pqyg)(z) and
vaa(z) = va(z) Avgay(z) = B A vga)(z).

So paa(z) = pa(a)(z) and vaa(z) = vaea)(z). Hence (cld)(z) = [d(4)](z).

(3)(«): Suppose [d(A)](z) = 0~. Then it is obvious from Proposition 4.12.

(=): Suppose (clA)(z) = (A, p). If (X, 4) > (A, p), then (o gy ¢ clA and hence
Tn ey & d(A4). If (N, 1)) > (A, p), then z(y gy € A. But any IQ-neighborhood of
T(q'g) and A can not be quasi-coincident at a point different form z.

So z(o g1y ¢ d(A). Hence [d(A)](z) = Ow. O
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