ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

B. P. Duggal and In Ho Jeon*

ABSTRACT. The operator $A \in L(\mathcal{H}_i)$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space \mathcal{H}_i , is said to be p-hyponormal if $(A^*A)^p \geq (AA^*)^p$ for $p \in (0,1]$. Let $\widehat{\mathcal{H}} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ denote the completion of $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ with respect to some crossnorm. Let I_i be the identity operator on \mathcal{H}_i . Letting $T_i := I_1 \otimes \cdots \otimes I_{i-1} \otimes A_i \otimes \cdots \otimes I_n$ on $\widehat{\mathcal{H}}$, where each A_i is p-hyponormal, it is proved that the commuting n-tuple $\mathbf{T} = (T_1, \ldots, T_n)$ satisfies Bishop's condition (β) and that if \mathbf{T} is Weyl then there exists a non-singular commuting n-tuple \mathbf{S} such that $\mathbf{T} = \mathbf{S} + \mathbf{F}$ for some n-tuple \mathbf{F} of compact operators.

1. Introduction

Let $L(\mathcal{H})$ denote the Banach algebra of bounded linear operators acting on a complex infinite dimensional Hilbert space \mathcal{H} . Let $\mathbf{T} = (T_1, \ldots, T_n)$ denote a commuting n-tuple of operators in $L(\mathcal{H})$. Recall (Curto [2], Taylor [11]) that \mathbf{T} is said to be non-singular if the Koszul complex for \mathbf{T} , denoted by $K(\mathbf{T}, \mathcal{H})$, is exact at every stage. Also, \mathbf{T} is said to be Fredholm if the Koszul complex $K(\mathbf{T}, \mathcal{H})$ is Fredholm, i. e., all homology spaces of $K(\mathbf{T}, \mathcal{H})$ are finite dimensional. In this case the index of \mathbf{T} , denoted ind(\mathbf{T}), is defined as the Euler characteristic of $K(\mathbf{T}, \mathcal{H})$, i. e., as the alternating sum of dimensions of all homology spaces of $K(\mathbf{T}, \mathcal{H})$. If $\mathbf{T} \in L(\mathcal{H})$ is Fredholm with index zero, then we say that \mathbf{T} is Weyl. We shall write $\sigma_T(\mathbf{T})$, $\sigma_{Te}(\mathbf{T})$, and $\sigma_{Tw}(\mathbf{T})$ for the Taylor spectrum, the Taylor essential spectrum, and Taylor-Weyl spectrum of \mathbf{T} , respectively: thus,

$$\sigma_T(\mathbf{T}) = \{\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \mathbf{T} - \lambda \text{ is singular}\},\$$

 $\sigma_{Te}(\mathbf{T}) = \{\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \mathbf{T} - \lambda \text{ is not Fredholm}\},\$

Received by the editors July 28, 2004 and, in revised form, November 23, 2004. 2000 Mathematics Subject Classification. 47B20.

Key words and phrases. n-tuple of p-hyponormal operators, Bishop's condition(β), quasisimilarity.

^{*}This work was supported by Korea Research Foundation Grant (KRF-2001-050-D0001).

and

$$\sigma_{Tw}(\mathbf{T}) = \{\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \mathbf{T} - \lambda \text{ is not Weyl}\}.$$

For any open polydisk $D \subset \mathbb{C}^n$, let $\mathcal{O}(D,\mathcal{H})$ denote the Frechét space of \mathcal{H} -valued analytic functions on D. Then we say (Eschmeier & Putinar [6]) that a commuting n-tuple \mathbf{T} has the single valued extension property, shortened to SVEP, if the Koszul complex $\mathcal{K}(\mathbf{T}-\lambda,\mathcal{O}(D,\mathcal{H}))$ is exact in positive degrees and \mathbf{T} has Bishop's condition (β) if it has the SVEP and its Koszul complex has also separated homology in degree zero. Obviously, the following implication holds:

Bishop's condition(
$$\beta$$
) \Longrightarrow the SVEP.

For more details, see (Eschmeier & Putinar [6]).

We shall write

$$\sigma_p(\mathbf{T}) = \left\{ \lambda \in \mathbb{C}^n : \text{ there exists a non-zero vector } x \in \mathcal{H} \right.$$

such that
$$x \in \bigcap \ker(T_i - \lambda_i)$$

for the eigenvalues of T,

$$p_{00}(\mathbf{T}) = \sigma_T(\mathbf{T}) \setminus {\sigma_{Te}(\mathbf{T}) \cup \mathrm{acc}\sigma(\mathbf{T})}$$

for the Riesz points of $\sigma_T(\mathbf{T})$, and iso $\sigma_T(\mathbf{T})$ for all isolated points of $\sigma_T(\mathbf{T})$, respectively. Recall (Aluthge [1], Duggal [4, 5], Jeon & Duggal [8], Yingbin & Zikun [14]) that an operator $T \in L(\mathcal{H})$ is said to be p-hyponormal if

$$(T^*T)^p - (TT^*)^p \ge 0$$
 for $p \in (0, 1]$.

If p=1, T is just hyponormal. We shall denote the class of p-hyponormal operators by $\mathfrak{H}(p)$; $\mathfrak{H}(p)$ shall denote the class of those p-hyponormal operators for which the partial isometry U in the polar decomposition T=U|T| is unitary.

Throughout this paper, for complex infinite dimensional Hilbert spaces \mathcal{H}_i ($1 \leq i \leq n$), we let $\widehat{\mathcal{H}} = \widehat{\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n}$ denote the completion of $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ with respect to some crossnorm. Let I_i be the identity operator on \mathcal{H}_i . For $A_i \in L(\mathcal{H}_i)$, let

$$T_i := I_1 \otimes \cdots \otimes I_{i-1} \otimes A_i \otimes \cdots \otimes I_n \text{ on } \widehat{\mathcal{H}}.$$

Then $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting (in fact, doubly commuting) *n*-tuple of operators on $\widehat{\mathcal{H}}$.

2. RESULTS

Theorem 1. Let $A_i \in \mathfrak{H}(p)$ and let $T = (T_1, \ldots, T_n)$ be the n-tuple of operators

$$T_i := I_1 \otimes \cdots \otimes I_{i-1} \otimes A_i \otimes \cdots \otimes I_n \text{ on } \widehat{\mathcal{H}}.$$

Then there exist an n-tuple $S = (S_1, \ldots, S_n)$ with

$$S_i := I_1 \otimes \cdots \otimes I_{i-1} \otimes B_i \otimes \cdots \otimes I_n \text{ on } \widehat{\mathcal{H}} \text{ for some } B_i \in \mathfrak{H}(1),$$

a quasiaffinity X and an injection Y such that both **T** and **S** have Bishop's condition (β) and

$$XT = SX$$
 and $TY = YS$.

Proof. Given an $A_i \in \mathfrak{H}(p)$, we decompose A_i into its normal and pure parts by $A_i = A_{i0} \oplus A_{i1}$ with respect to the decomposition $\mathcal{H}_i = \mathcal{H}_{i0} \oplus \mathcal{H}_{i1}$. Then $A_{i1} \in \mathfrak{H}(p)$. Let A_{i1} have the polar decomposition $A_{i1} = U_{i1}|A_{i1}|$ where U_{i1} is an isometry. Define the Aluthge transform \widehat{A}_{i1} of A_{i1} by $\widehat{A}_{i1} = |A_{i1}|^{1/2}U_{i1}|A_{i1}|^{1/2}$. Let \widehat{A}_{i1} have the polar decomposition $\widehat{A}_{i1} = V_{i1}|\widehat{A}_{i1}|$ where V_{i1} is (also) an isometry. Again, define the Aluthge transform \widehat{A}_{i1} of \widehat{A}_{i1} by $\widehat{A}_{i1} = |\widehat{A}_{i1}|^{1/2}V_{i1}|\widehat{A}_{i1}|^{1/2}$. Then $\widehat{A}_{i1} \in \mathfrak{H}(1)$ by Aluthge [1]. Let $X_{i1} = |\widehat{A}_{i1}|^{1/2}|A_{i1}|^{1/2}$ and $Y_{i1} = U_{i1}|A_{i1}|^{1/2}V_{i1}|\widehat{A}_{i1}|^{1/2}$. Then X_{i1} is a quasiaffinity and Y_{i1} is an injection such that

$$X_{i1}A_{i1} = \widetilde{A}_{i1}X_{i1}$$
 and $A_{i1}Y_{i1} = Y_{i1}\widetilde{A}_{i1}$.

Let $B_i = A_{i0} \oplus \widetilde{A}_{i1}$. Then $B_i \in \mathfrak{H}(1)$. Defining the quasiaffinity X_i by $X_i = I_{\mathcal{H}_{i0}} \oplus X_{i1}$ and the injection Y_i by $Y_i = I_{\mathcal{H}_{i0}} \oplus Y_{i1}$, it follows that

$$X_i A_i = B_i X_i$$
 and $A_i Y_i = Y_i B_i$.

Considering the tensor products of operators X and Y,

$$X := X_i \otimes \cdots \otimes X_n$$
 and $Y := Y_1 \otimes \cdots \otimes Y_n$,

it is then seen that X is a quasiaffinity, Y is an injection and

$$X\mathbf{T} = \mathbf{S}X$$
 and $\mathbf{T}Y = Y\mathbf{S}$.

Recall from Duggal [4, Theorem 3] that if $B_1, B_2 \in L(\mathcal{H}_i)$, then

$$B_1 \otimes B_2 \in \mathfrak{H}(p)$$
 if and only if $B_1, B_2 \in \mathfrak{H}(p)$. (2.1)

Hence it follows from a finite induction argument that

$$T_i \in \mathfrak{H}(p)$$
 if and only if $A_i \in \mathfrak{H}(p)$ for all $i = 1, ..., n$. (2.2)

Since each T_i has Bishop's condition (β) (see Duggal [5, Theorem 1], Yingbin & Zikun [14, Theorem 7]), it follows from Wolff [13, Corollary 2.2] that the n-tuple $\mathbf{T} = (T_1, \ldots, T_n)$ has Bishop's condition (β). Similarly, the n-tuple $\mathbf{S} = (S_1, \ldots, S_n)$ also has Bishop's condition (β).

Corollary 2. We first notice that both X and Y constructed in proof of Theorem 1 are quasiaffinities when each A_i belongs to $\mathfrak{HU}(p)$.

$$\sigma_*(\mathbf{T}) = \sigma_*(\mathbf{S}), \text{ where } \sigma_* \text{ stands for either of } \sigma_T, \ \sigma_{Te}, \ \sigma_{Tw}.$$
 (2.3)

Proof. We first notice that X and Y constructed in proof of Theorem 1 become both quasiaffinities when each A_i belongs to $\mathfrak{HU}(p)$. Thus \mathbf{T} and \mathbf{S} are (jointly) quasisimilar n-tuples. Since \mathbf{T} and \mathbf{S} have Bishop's condition (β) by Theorem 1, Putinar [9, Theorem 1] implies (2.3). This completes the proof.

Fredholm n-tuples enjoy most of the properties single Fredholm operators possess (see Curto [3]). It is well known that a Fredholm operator of index zero (i. e., Weyl operator) can be perturbed by a compact operator to an invertible operator. Thus one may ask if this property holds in several variables (cf. Curto [2, Problem 3]). As it turns out, this perturbation property fails in several variables (see Gelca [7] for an example). Despite the failure of this property for the general case, the following result gives a positive answer to the question in case of tensor products considered here.

Theorem 3. Let $A_i \in \mathfrak{H}(p)$ and let $\mathbf{T} = (T_1, \dots, T_n)$ be an n-tuple of operators $T_i := I_1 \otimes \dots \otimes I_{i-1} \otimes A_i \otimes \dots \otimes I_n$ on $\widehat{\mathcal{H}}$.

If **T** is Weyl and singular, then there exists a non-singular commuting n-tuple $S = (S_1, ..., S_n)$ such that T = S + F for some n-tuple of compact operators F_i (i = 1, ..., n).

Proof. Since **T** has Bishop's condition (β) , if **T** is Weyl and singular, then Putinar [10, Theorem 1] implies $0 \in p_{00}(\mathbf{T})$. Let f be the characteristic function of $0 \in \text{iso}\sigma_T(\mathbf{T})$. Since f is analytic in a neighborhood of $\sigma_T(\mathbf{T})$, Taylor [11, Theorem 4.8] implies the existence of an idempotent $P_0 = f(\mathbf{T}) \in L(\widehat{\mathcal{H}})$ such that $P_0T_i = T_iP_0$, T_i is quasinilpotent on $\text{ran}P_0$, and

$$0 \notin \sigma_T(\mathbf{T}|_{\ker P_0}). \tag{2.4}$$

Since the restriction of a p-hyponormal operator to an invariant subspace is again p-hyponormal Uchiyama ([12, Lemma 4]) and p-hyponormal operators are normaloid, we see that $T_i|_{\operatorname{ran}P_0}=0$. Then the fact that $0 \in p_{00}(\mathbf{T})$ implies that the subspace $\operatorname{ran}P_0$ is finite dimensional, and so P_0 is a compact operator on $\widehat{\mathcal{H}}$. Considering $\mathbf{F}=(P_0,\ldots,P_0)$ and $\mathbf{S}=\mathbf{T}-\mathbf{F}=(T_1-P_0,\ldots,T_n-P_0)$, it now follows that \mathbf{S} is a commuting n-tuple. This by [Curto [3] \mathbf{p} . 39] implies that

$$\sigma_T(\mathbf{S}) = \sigma_T((\mathbf{T} - \mathbf{F})|_{\operatorname{ran} P_0}) \cup \sigma_T((\mathbf{T} - \mathbf{F})|_{\ker P_0}).$$

Obviously, $0 \notin \sigma_T((\mathbf{T} - \mathbf{F})|_{ranP_0})$ and by (2.4)

$$0 \notin \sigma_T((\mathbf{T} - \mathbf{F})|_{\ker P_0}) = \sigma_T(\mathbf{T}|_{\ker P_0}).$$

Thus $0 \notin \sigma_T(\mathbf{S})$, i. e., $\mathbf{S} = \mathbf{T} - \mathbf{F}$ is non-singular, and hence $\mathbf{T} = \mathbf{S} + \mathbf{F}$.

ACKNOWLEDGMENT

The authors wish to express their appreciation to the referee whose suggestions have led to an improvement of the paper.

REFERENCES

- 1. A. Aluthge: On p-hyponormal operators for 0 . Integral Equations Operator Theory 13 (1990), no. 3, 307-315. MR 91a:47025
- R. E. Curto: Applications of several complex variables to multiparameter spectral theory. In:
 John B. Conway & Bernard B. Morrel (Eds.), Surveys of some recent results in operator theory,
 Vol. II (pp. 25-90), Pitman Res. Notes Math. Ser., 192. Longman Sci. Tech., Harlow, 1988.
 MR 90d:47007
- 3. _____: Problems in multivariable operator theory. In: Robert S. Doran (Ed.), Selfadjoint and nonselfadjoint operator algebras and operator theory (Fort Worth, TX, 1990) (pp. 15-17), Contemp. Math., 120. Amer. Math. Soc., Providence, RI, 1991. MR 92f:47001
- B. P. Duggal: Tensor products of operators—strong stability and p-hyponormality. Glasg. Math. J. 42 (2000), no. 3, 371-381. MR 2001i:47029
- p-hyponormal operators satisfy Bishop's condition (β). Integral Equations Operator Theory 40 (2001), no. 4, 436–440. MR 2002d:47034
- J. Eschmeier & M. Putinar: Spectral decompositions and analytic sheaves, London Mathematical Society Monographs. New Series, 10. The Clarendon Press, Oxford University Press, New York, 1996. MR 98h:47002
- R. Gelca: Compact perturbations of Fredholm n-tuples. Proc. Amer. Math. Soc. 122 (1994), no. 1, 195-198. MR 95g:47018

- 8. I. H. Jeon & B. P. Duggal: p-hyponormal operators and quasisimilarity. Integral Equations Operator Theory 49 (2004), no. 3, 397-403. CMP 2068436
- M. Putinar: Quasi-similarity of tuples with Bishop's property (β). Integral Equations Operator Theory 15 (1992), no. 6, 1047–1052. MR 94a:47036
- On Weyl spectrum in several variables. Math. Japon. 50 (1999), no. 3, 355-357.
 MR 2001k:47014
- 11. J. L. Taylor: The analytic-functional calculus for several commuting operators. *Acta Math.* 125 (1970), 1-38. MR 42#6622
- 12. A. Uchiyama: Berger-Shaw's theorem for p-hyponormal operators. Integral Equations Operator Theory 33 (1999), no. 2, 221-230. MR 2000b:47056
- 13. R. Wolff: Bishop's property (β) for tensor product tuples of operators. J. Operator Theory 42 (1999), no. 2, 371–377. MR 2000f:47010
- 14. R. Yingbin & Y. Zikun: Spectral structure and subdecomposability of p-hyponormal operators. Proc. Amer. Math. Soc. 128 (2000), no. 7, 2069–2074. MR 2000m:47029
- (B. P. Duggal) Department of Mathematics, UAEU, P. O. Box 17551, Al Ain, Arab Emirates

Email address: bpduggal@uaeu.ac.ae

(I. H. JEON) DEPARTMENT OF MATHEMATICS, EWHA WOMANS UNIVERSITY, 11-1 DAEHYUNDONG, SEODAEMUN-GU, SEOUL 120-750, KOREA

Email address: jih@math.ewha.ac.kr

Current Address: Department of Mathematics, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-747, Korea

Email address: jih@math.snu.ac.kr