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NOOR ITERATIONS FOR NONLINEAR LIPSCHITZIAN
STRONGLY ACCRETIVE MAPPINGS

JAE UG JEONG, M. AsLaM NOOR, AND A. RAFIQ

ABSTRACT. In this paper, we suggest and analyze Noor (three-step) iterative scheme
for solving nonlinear strongly accretive operator equation Tz = f. The results
obtained in this paper represent an extension as well as refinement of previous
known results.

1. INTRODUCTION

Let X be a real Banach space with norm | - || and dual X*. An operator T with
domain D(T) and range R(T) in X is said to be accretive (c¢f. Browder [1], Kato
[12]) if the inequality

lz —yll < llz —y+t(Tz - Ty)||

holds for each z and y in D(T') and for all ¢t > 0. T is accretive if and only if for any
z,y € D(T), there exists j € J(z — y) such that (T'z — Ty, j) > 0, where

J(@) ={f e X" I = (&, f) = l=I’}, zeX,

is the normalized duality mapping of X and (-, -) denotes the duality pairing between
X and X*.

A fundamental result, due to Browder [2], in the theory of accretive operators
states that the initial value problem

du
au - =
7 +Tu=0, u(0)=up,

is solvable if T is a locally Lipschitzian and accretive operator on X.
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Definition 1.1. Let K be a nonempty subset of a Banach space X. A mapping
T : K — X is said to be strongly accretive if there exists a real number k£ > 0 such
that for every z,y € K,

(Tz =Ty, ) 2 kllz - y|l?

holds for some j € J(z — y).

Without loss of generality we assume that k € (0,1). This class of mappings has
been investigated by many authors (see Browder [2], Gwinner [9], Morales [14]).

In particular, Morales [14] proved that if T : X — X is continuous and strongly
accretive, then T maps X onto X, that is, for each f in X, the equation Tz = f
has a solution in X.

Definition 1.2. Let K be a nonempty subset of a Banach space X. A mapping
T : K — X is said to be strictly pseudocontractive if there exists £ > 1 such that the
inequality

e —yll < (A +7)(z —y) - rt(Tz - Ty)| (1.1)

holds for all z,y in K and r > 0.

Strictly pseudocontractive mappings have been studied by various authors (see
Chidume [3, 4]).

The objective of this paper is to study the iterative solutions to the equation
Tz = f in the case when T is Lipschitzian and strongly accretive and X is Ly(or
Ip) with p > 2. For this purpose, let us first recall the following three iteration
processes due to Mann [13], Ishikawa [11] and Noor {15, 16], Noor, Rassias & Huang
(17, respectively.

Mann Iteration. For a given z¢ € K, compute the sequence {z,}52, in K by the

iterative scheme
Tnt1 = (1 = cu)2p + caTTpn, n 20,

where {cn},;“’___o is a real sequence satisfying cg = 1,0 < ¢, < 1foralln > 1 and
2 neo Cn = 00,

Ishikawa Iteration. For a given zp € K, compute the sequence {z,}32, in K by
the iterative scheme

Tpn+1 = (1 - an)wn + anTyn
Yn = (1 - ﬁn)zn + ,BnTxnn n > Oa
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where {0}, and {Br}52, are sequences in [0, 1] satisfying the conditions: 0 <
an < Bn < 1for all n, limy 00 Bn = 0 and 3 e g nfr = 00,
Noor Iteration. For a given zg € K, compute sequences {z,}52 in K by iterative

scheme
ZTnt1 = (1 — an)zn + anTyn

Yn = (1 - :Bn)mn + ﬁnTzn
Z’n = (1 - 771):1"11 + 'YnTmn, n Z O)

where {an}220, {Bn}22( and {12}52, are sequences in [0, 1] satisfying some certain
conditions.

It is well known that three-step iteration processes were suggested and analyzed
by Noor [15, 16], Noor, Rassias & Huang [17] for variational inclusions(inequalities)
in a Hilbert space by using techniques of updating the solution and the auxiliary
principle. These three-step iterative schemes are also called Noor iterations, see, for
example, Rhoades & Soltuz [18]. Clearly Mann and Ishikawa iterations are special
cases of Noor iterations. We would like to mention that Noor iterations are similar
to those of the so-called §-schemes of Glowinski & Le Tallec [8] for finding a zero
of the sum of two (or more) maximal monotone operators by using the Lagrange
multiplier method. Glowinski & Le Tallec [8] used three-step iterative schemes to
find the approximate solutions of the elasto-viscoplasticity, liquid crystal theory and
eigenvalue problems.

They have shown that the three-step approximations perform better than the
two-step and one-step iterative methods. Haubruge, Nguyen & Strodiot [10] have
studied the convergence analysis of the three-step schemes of Glowinski & Le Tallec
[8] and applied these three-step iteration processes to obtain new splitting type
algorithms for solving variational inequalities, separable convex programming and
minimization of a sum of convex functions. They have also proved that three-step
iteration processes lead to highly parallelized algorithms under certain conditions.
It has been shown in Haubruge, Nguyen & Strodiot [10], Noor [15, 16] that three-
step schemes are a natural generalization of the splitting methods for solving partial
differential equations (inclusions). On the other hand, there are no such three-step
schemes for solving nonlinear operator equations in Lp (or I,,) space.

In this paper, we consider and analyze Noor iteration process in Ly(or l,) space.
We prove that the Noor iteration process converges strongly to the unique solution
of the equation Tz = f in case T is a Lipschitzian and strongly accretive operator
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from L, (or Ip) into itself, or to the unique fixed point of T in case T is a Lipschitzian
and pseudo-contractive mapping from a bounded closed convex subset K of Ly(or
lp) into itself. Our results can be viewed as an extension of three-step and two-step
iterative schemes of Glowinski & Le Tallec [8}, Noor (15, 16], Ishikawa [11], Chidume
[4] and Lei Deng [7].

2. MAIN RESULTS

In this section, we study the convergence properties of the Noor iterative schemes.

For this purpose, we need the following result.

Lemma 2.1 (Chidume (3, 4]). Let X = Ly(or lp), 2 < p < 0co. For any z,y € X,

we have
Iz +yl? < (0 — Dl + lwll? + 2(, (), Vi€ J(z+vy). (2.1)

Theorem 2.1. Let X = Ly (or l,), 2<p<o0, and T :X — X be a Lipschitzian
and strongly accretive map with the Lipschitz constant L (> 1). Define S: X — X
by Sz = f — Tz + z. For arbitrary zo € X, the sequence {,}2, is defined by

Znt+1 = (1 — an)zn + anSyn (2.2)
Yn = (1 = Bn)Tn + BrS2n (2.3)
Zn = (1 = Yn)Tn + SZn, n >0, (2.4)

where {an}S2 g, {Bn}y and {Yn}3%, are sequences in [0, 1] satisfying:
(i)
lim o, = 0= lim G,,
n—oo n—ro0
(i)
o0
= oo
n=0

Then {z,}32, converges strongly to the unique solution of Tx = f.

Proof. We first observe that the equation Tz = f has a unique solution which is
denoted by q. In fact, the existence and the uniqueness of a solution to T'z = f follow
from Morales [14] and the strong accretiveness of T'. Observe that S is Lipschitzian
with the same Lipschitz constant L and q is a fixed point of §. And it follows from
(2.4) that

lzn = zall = YnllTn — Szal|
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= Yl[|[Tzn — Tql|
< mLl|zn — 4|
< L|z, — q|| (2.5)

Using (2.3) we obtain

lzn — ynll = Brllzn — Sznll
< Bu(llS2n = Szn|l + [1S20 — 2all)
< Bu(Ll|zn = @all + [|S2n — znl|)
< Ba(LPml|zn — gll + | Tg — Tzal)
< L(Lyn + 1)Ballzn — qll
< L(L + 1)Bnllzn — gl|-
Since the operator T is strongly accretive with constant k£ > 0 and Lipschitz contin-
uous with constant L(> 1), we have
(#n = 4,5(zn ~ @) = ~W(TZn = Tq, j(Zn — 9))
+ (@~ 4 5(2n - )
< —kvallon = ql® + llza — gll®
= (1 - ky)llzn — gl

and

(S2n — 8¢,§(%n —~ @) = (~T2n + Tq + 22 — ¢, j(zn — q))

= (Tzn — Tzn, j(Tn — q))

—(Tzn — Tq, j(zn — @) + (20 — 4, 5(zn — @))
< Ll|zn — zellllzn — gll - kll2n — ql?

+ (1= ky)llzn — gl?
< (L2yn — b+ 1 — kyn)||2n — g2
= [(L? = k)yn + 1 — K]||zp — q?
< (L2 —k+1-k)||z, — gl (2.6)
Also,

(Yn — ¢, §(xn — q)) = (1 = Bn){xn — ¢,5(Tn — @)) + Bn{Szn — ¢, j(xn — q))
= (1 - IBn)”xn - q”2 + ﬂn(szn - q,j(wn - Q»
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< llzn — qll* + Ba{Szn — Sq,5(zn — q))
< |len - gl + (L - k) + 1 — E]Ballzn — g
< |lzn = gll* + (L? = k + 1 = k)Ball2n — qlf?,

(Syn — 89,5(zn — q))
= (Tzn — Tyn, j(zn — q)) — (T2 — T, (20 — 9))

+ (Yn — ¢, 5(zn — @)
< Tzn — Tynllllzn — all — kllzn — g

+{yn — 0,5 (zn — @)
< L|izn — ynllllzn — gll = kllzn — gl

+ (yn — 4,(xa — q))
< LX(L +1)Ballzn — qlf* — kllza — gl

+|lzn — qll* + (L* — k+ 1 — k)Bullzn — gl

=[l—k+L*L+2) —k+1—k)Balllzn — q|l?, (2.7)

and

(Szn — 8¢, j(zn — @)) = —(Txn —Tq,§(xn — @) + (Tn — ¢, §(zn — q))
< (1= K)||zs - g)% (2.8)

Thus, from Lemma 2.1 and from (2.4), (2.8) for alln € N, n >0,

Izn = qll* = 7 (S2n ~ Sq) + (1 = ) (zn — 9|12

< (p— D7lISzn — Sqif

+ (1= m)?l|2n — qll* + 290 (1 — 1) (Szn — Sq,5(xn — q))
< (p— V2L zn — gl + (1 = %)?llzn — ql)?

+ 29 (1 — 1) (1 — K)l|2n — g|f?
< (w7 + 1= 1)len — gll%w = (p - 1)L°
=1+ (w— D72]llen — qll?
< wljzn — glf?,
and

lyn = all* = [18n(Szn — Sg) + (1 = Ba)(@n — DI
< (p = 1Bz — Sqll* + (1 = Bn)?llen — gl
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+26n(1 = Bn)(Szn ~ 5,5(zn — 0))
< whillzn — al* + (1 = Ba)llzn — g
+2Bn(1 = Bn)(L? ~ k + 1 = k)||zn — g
< [WB + (1= Bn)® +2Ba(1 = Bn)(L® — k + 1 = K)]l|zn — ql)®
< [(w? - DB+ 1+ 2 = k)lllzn — all”
< (w* +2(L? = k) lon — all* (29)

In a similar way, from Lemma 2.1 and from (2.8), (2.9), we obtain that for alln € N,
n > 0,
lzn+1 = glf* = l(1 = @) (@ — @) + cn(Syn ~ Sq)|I?
< (p—1)ai||Syn — Sall* + (1 - an)?||zn — gl®
+ 20 (1 — ) (Syn — S, j(zn — )
< (p — L%} lyn — all®
+ (1= an)?llen — glI* + 205 (1 = @) (Syn — 54, j(n — ))
< wal(w? + 2(L? — k))l|lzn — gll* + (1 - an)?llzn — gf?
+2an(l — o)1 =k + (LA(L +2) — k+ 1 = k)Ba)||zn — ql)?
< [1 = 2kan + [(w(w? + 2(L% - k) + 1)on,
+(LA(L+2) ~k+1=k)Balom]llzn — ql®.  (2.10)
By condition (i), we have

an < k
"= 2w(w? +2(L% - k)) + 1)’

k
S T T kv 1-R)

Now with the help of condition (ii) and from the above relations, we obtain
Izn+1 = all* < (1 — kan)||zn — gl
< exp(—kan)l|zn — ql®

n
< exp(—k Y a)llzr — gl

=1

(2.11)

which shows that lim ||z, — ¢|| = 0. O
n—o0

We now turn to consider approximating fixed points of pseudo-contractive map-
pings via Noor iteration process.
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We now turn to consider approximating fixed points of pseudo-contractive map-
pings via Noor iteration process.

Theorem 2.2. Let X = Ly(or ly), 2 < p < co. Suppose that K is a nonempty
closed and convexr subset of X and T : K — K is a Lipschitz strictly pseudo-
contractive mapping with Lipschitz constant L(> 1). Let the sequence {x,}52, be
defined by

To € K

Znt+1 = (1 — an)Tn + anTyn (2.12)
Yn = (1 — Bn)Zn + BnTzn (2.13)
zn = (1= ")%n + MmT2Tn, n20, (2.14)

where {0, }520, {8} and {10}, are sequences in [0, 1] satisfying the conditions
(i) and (i) of Theorem 2.1. Then {zn}2, converges strongly to the unique fired
point of T.

Proof. The existence of a fixed point follows from Deimling [6]. Let g denotes a
fixed point of T. We will show that ¢ is the unique fixed point of T. Suppose
there exists p € F(T), where F(T') is the fixed point set of T. Since T is strictly
pseudo-contractive, (I — T) is a strongly accretive map Chidume [3]. Thus

Re((I - T)z — (I - T)y, j(z — ) 2 sllz —yl%, (2.15)

where s = % Hence

lp—al? = (p—q.5(p - 9))
=(Tp—Tq,j(p - q))
=—(I-Tp-I-T)g,jlp—a)+P—-ailp—9)
< (1-s)llp—ql*

Since s € (0,1), it follows that [[p— g2 < 0, which implies the uniqueness. It follows
from (2.11) that

(Twn - Tq,j(mn - Q)) = —<(I - T)xn - (I - T)qa](x'n - q))
+ (2n — ¢, §(zn — q))
< (1-9)||lzn —ql%, (2.16)
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and

#n = znll < Wm(llzn — gl + llg = Tzal)
< (1l + L)llzn — gl
<L+ L)||zn —qll. (2.17)
Thus, using Lemma 2.1, (2.15) and (2.16), we have

|20 = gll* = 17(Tzn = Tq) + (1 — ) (zn — @I
< (p~ D2l Tzn — Tqll® + (1 = 7a)?[l2n — qll?
+ 273 (1 = )Tz — Tq, j(zn — q))
< [w%zz +(1- ’Yn)z +29(1 = 1) (1 = 8)]llzn — ‘1“2
< (1+ (w = 1)72)llen — ql?
< wl|z, — gl|*. (2.18)
Using (2.13) we obtain

2n — ynll = Bullzn — Tzl
< BulllT2n — Tq|| + |lzn — qll)
< BalLllzn — gl + llzn — qll)
< Bu(Lvw + 1)|lzn — gl|- (2.19)

From (2.15) and (2.16), we have

(Tzn — Tq, j(zn — q)) = (T2n — T2n, j(zn — @) + (T2 — Tg, j(n — g))
< Tz — Tzallllzn — gl + (1 = 8)llzn — gl
< Lllzn — zallllzn — gl + (1 = 8)llzn — q|f?
< L1+ L)l|lzn — gll* + (1 = s)l|zn — glf?
— [L(1+ L) + 1 - s]llen — qll”. (2.20)
In a similar way, we obtain
(Tyn — Tq,5(zn — )} = (Tyn — Tn, j(Tn — @)) + (T2n — Tq, j(n — q))
< Lllyn = @allllzn = gl + (1 = 8)|lzn — g|)?

< L(LVw + 1)Bal|zn — @lf* + (1 - 8)||zn — gl
= [L(LVw + 1)B, + 1 = sl||lzn — gl (2.21)
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Next we make an estimation for ||y, — ¢||2. From (2.17) and (2.18) we have

g = all* = 18a(T2n = Tq) + (1 = B)(@n = 9)
< (p = 1)BlITzn — Tall® + (1~ Bn)?llzn — qlf?
+2Bn(1 = Bn)(T2n — Tq, j(n — q))
< whillzn = all* + (1 = Bn)?llzs — al®
+26n(1 — Bn)[L(L+ L) + 1 — 8l|z — q|?
< [w?B; + (1= Ba)? + 2Ba(1 = Bu)[L(L + L) + 1 — s]}l|zn — qI?
< [(w® = 1)B% + 1+ 2L(1 + L)]||zn — gl
< [w? +2L(1 + L)]||zn — qlf*. (2.22)
Thus, from Lemma 2.1 and from (2.17), (2.19), we obtain that for all n > 0,

zn+1 = all* = |(1 = an)(@n — q) + cn(Tyn — Ta)||?
< (p = 1)oi|Tyn — Tall* + (1 — an)?|lzn — qfl?
+ 2an(1 = on){Tyn — Tq, j(2n — q))
< wad[lya — gl + (1 = an)?llzn — gl
+20m(1 = an)(Tyn — Tq, j(zn — q))
< woi[w?® + 2L(1 + D)ll|zn — ql® + (1 = an)?[lzn — qlf?
+ 20 (1 — o) [L(Lzr — g|?
<[1-2san + [(w(w+2L(1 + L)) + 1)an + 2L(Lv/w)
By condition (i), we have
k
(w(w+ 2L(1+ L)) + 1)’
= Ve
With the help of condition (ii) and (2.20), we get

an < 2 (223)

”-Tn+1 - fIHZ < (1 - san)”xn - QI|2
< exp(—san)|lzn — g||?
n
< exp(—s Y _ ai)llz1 — qll?,
i=1

which shows that lim ||z, — ¢|| = 0. O
n—00
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