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K-THEORY OF CROSSED PRODUCTS OF C*-ALGEBRAS

TAKAHIRO SUDO

ABSTRACT. We study continuous fields and K-groups of crossed products of C*-
algebras. It is shown under a reasonable assumption that there exist continuous
fields of C*-algebras between crossed products of C*-algebras by amenable locally
compact groups and tensor products of C*-algebras with their group C*-algebras,
and their K-groups are the same under the additional assumptions.

0. INTRODUCTION

We start with recalling the following:
Notation. Let C*(G) denote the group C*-algebra of a locally compact group G,
and L!(G) be the Banach algebra of all integrable functions on G (cf. Dixmier [3]).
For a C*-algebra 2, we denote by A x, G the C*-crossed product of 2 by G for o
an action, that is, a homomorphism from G to the automorphism group of 2, and
denote by L'(G,2) the Banach algebra of all 2-valued integrable functions on G
(cf. Pedersen [10]). Let K, (2) for * = 0,1 be the K-groups of a C*-algebra 2. See
Blackadar [1], Rgrdam, Larsen & Laustsen [12] and Wegge-Olsen [14] for details on
the K-theory of C*-algebras.

Our first motivation for this study is the following:
Problem. Let 2 be a C*-algebra, G an amenable locally compact group and A x,G
their crossed product for an action a. Then is it true that for * = 0, 1,

K.(Axa G) 2K, (AR CHG)) 7

This problem is certainly reasonable since crossed products are regarded as skewed
tensor products, which are certainly close to tensor products in a sense. However,
the answer is false in general, but it is known that the answer is true for G any sim-
ply connected solvable Lie groups, in particular, the real group (the Connes’ Thom
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isomorphism for crossed products by R). In the process we show that there always
exist continuous fields of Banach spaces between the crossed products % x, G and
the tensor products 2 ® C*(G).I This should be nontrivial. Moreover, under a rea-
sonable assumption on actions we obtain continuous fields of C*-algebras between
the crossed products and the tensor products. By using this we obtain a partial
answer to the problem under technical assumptions on projections and unitaries of
matrix algebras over the fibers. Our idea for, the proofs is to use the dense parts of
crossed products by amenable locally compact’ groups, and some techniques in the
theory of C*-algebras of continuous fields (continuous deformation of C*-algebras).
See Dixmier [3], Fell [4], Lee [6] and Lee [7] for the theory of continuous fields.

1. CONTINUOUS FIELDS AND K-GROUPS OF CROSSED PRODUCTS

First of all, we check the following:

Proposition 1.1. Let 2 be a C*-algebra and G an amenable locally compact group.
Then the norm equality holds for generating elements af and a ® f (for a € A and
f € LN(G)) of the dense part L*(G, ) of the crossed product U x4 G for an action
a, and A ® L (G) of the tensor product A @ C*(G) respectively.

Proof. Recall that any element of 2 x, G is approximated by elements of the form:
S"a;jf; (finite sum) for a; € A and f; € L'(G). Also, any element of % @ C*(G)
is approximated by elements of the form: Y a; ® f; (finite sum) for a; € 2 and
fi € LY(G). Thus, we can always define an element-wise map ® from 2 X G to
A ® C*(G) restricted to their dense parts as follows:

©:LYG, M) 3D aifi Y a;® fj € AR L(G).

Now let 7 be a faithful representation of 2 on a Hilbert space H, and A the
left regular representation of G on the Hilbert space L2(G) of all square integrable
functions on G. Then let # x A be the regular representation of 2A x, G induced
by the pair (r, ) on the Hilbert space L?(G, H) of all H-valued square integrable
functions on G, and defined by

G x (S aif)E(t) = /G (3 a3 £5(5)) e (t)ds
= /G’R'(at-l ( Z ajfj(s))) As€(t)ds
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for a; € &, f; € LYG), s,t € G and € € L*(G, H), where \£(t) = £(s™1t). Since G
is amenable, we have the following isomorphism, and set as follows:
Axg G (T XA (A% G) =AU, G

where 2 x7, G is the reduced crossed product of % x, G (¢f. Pedersen [10], Section
7.7). Furthermore, note that

/Gﬂ'(at—l ( Z ajfj(s)))/\sds = /G Z m{ap-1(a;)) f;(s)Asds
= Z /G 7(a;) fi(s)Asds
= Y #(a) | fiords
=Y #(a;)Af;)
By the natural identification between the Hilbert spaces L%(G, H) and HQL?(G),

we may identify the operators 7 (a;)A(f;) with 7(a;) ® A(f;) (in the following sense).

Indeed, we have

T(a;) @ A(f;)(€ ® g) = 7(a;)€ ® A(f5)(9)
= 7(a;) ® (fj * 9),

HaM)(E0)(D = (ey) [ FieMedséalt)
#ey) | 1i(9tads(t)
_ #(ay)¢ /G £5(s)g(s™1e)ds

foré € H,g € L*(G), &g € L*(G,H) and t € G, where #(a;)£®(f;*g) of course (but
somewhat confusingly) means that (7 (a;)¢ ® (f;*9))(t) = 7 (as-1(a;))E® (f;* 9)(t)
for t € G, and f; * g means the convolution product as used above.

Hence, we have
D ®(a)Afy) =D #(as) @ Afy)-
Therefore, we have the following norm equality:
1> @) All = [ 37 () ® M)

as bounded operators on the Hilbert spaces L?(G, H) and H® L*(G) respectively. [
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Remark. Note that the twisted crossed product 2 x,, G of a C*-algebra 2 by an
amenable locally compact group G with (o, u) a twisted action in the sense of Packer
& Raeburn [8] has L!(G, %) as a dense subspace so that the crossed product 2 x4 G
in the statement can be replaced with A x4, G.

Theorem 1.2. Let A be a C*-algebra and G an amenable locally compact group.
Then there ezists a continuous field of Banach spaces between the crossed product
A X G for an action o and the tensor product A ® C*(G) in the sense that there
exists the Banach space I'([0,1], {B¢}scp0.1)) of a continuous field on [0, 1] with fibers
By =ARC*(G) and B, =Ax, G fort € (0,1] as Banach spaces.

Moreover, if G is non-amenable, then one can replace A o G with the reduced
crossed product A %7, G, and A Q@ C*(G) with A @ C}(G) respectively, where C}(Q)
18 the reduced group C*-algebra of G.

Proof. We can define the Banach space I'([0, 1}, {Bt }4c[0,1)) of a continuous field on
the interval [0,1] with those fibers in the statement to be the completion of the

identity operator fields:
0]t {Z{T(aj) ®A(f;) €A®CH(G), t=0,
Y 7)) € Ao G, te (0,1
for a; € 2 and f; € L*(G) by using continuity of the norm for those elements of the
dense parts as in Proposition 1.1.
Since we are dealing with the regular representation A on L?(G), the latter part

follows the same way as above. O

Remark. This theorem should be new but it might be known to specialists. We may
replace the crossed product 2 x, G for an action a with the twisted crossed product
AXgq oG for (o, u) atwisted action, and its reduced crossed product with its reduced

twisted crossed product respectively.
To obtain continuous fields of C*-algebras we introduce the following:

Definition. Let (A, G,a) be a C*-dynamical system for % a C™-algebra, G an
amenable locally compact group and « an action. Then we say that the action « is
deformably trivial if there exists a family of actions a® for s € [0, 1] such that the
functions: [0,1] 3 s = ag(a) € A for a € A and g € G are continuous, a! = a, and
a¥ is trivial so that A x40 G = A® C*(G). We also say that the family {a®},cp0

is a continuous deformation of actions from « to the identity action.
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Remark. Note that for g € G, a € 2 and s,t € [0, 1],

e (@) = llag()ll] < llag(a) — ag(a)ll.

If G is contractible, then « is deformably trivial. If G is a simply connected
solvable Lie group, it is homeomorphic (or diffeomorphic) to the space R™ with
n = dim G, so that G is contractible and « is deformably trivial. Also, for twisted
crossed products of C*-algebras we may define a continuous deformation of twisted

actions to the trivial twisted action as above.

Theorem 1.3. Let A be a C*-algebra, G an amenable locally compact group and
A %, G the crossed product of A by G with an action o. Suppose that there exists
a continuous deformation {Oét}te[o,l] of actions from a to the identity action. Then
there exists a continuous field of C*-algebras between the crossed product A xo G
for an action a and the tensor product A ® C*(G) in the sense that there exists a
continuous field C*-algebra T'([0,1], {B:}1p0,1)) with fibers C*-algebras Bo = A®
C*(G), B1 =A%, G and By = A x4 G fort € (0,1].

Moreover, if G is non-amenable, then one can replace A xo G with the reduced
crossed product A x7, G and A ® C*(G) with A ® C}(G) respectively.

Proof. The existence of the continuous deformation {at}te[o,u of actions ensures that
the multiplication and involution at the fibers are continuous. By combining this
point with Theorem 1.2, we obtain a continuous fleld of C*-algebras as desired. [

Remark. This theorem is the key result to the following ones with additional condi-

tions.

Definition. For a continuous field C*-algebra on [0,1] with fibers B, for t € [0, 1],
we say that the K-groups of the fibers are locally continuous if any class of the
K-groups of 9B; is locally continuous under a locally continuous path connecting an

element representing the class in the continuous field C*-algebra.

Remark. If any projection (or unitary) in matrix algebras over the fibers (or its uni-
tization) is connected to a projection (or unitary) in matrix algebras over the (other)
fibers by projections (or unitaries) in matrix algebras over the continuous field C*-
algebra, then the K-groups of the fibers are locally and globally continuous. This
condition on the projections and unitaries is equivalent to that any projection (or
unitary) in matrix algebras over the fibers can be lifted to projections (or unitaries)

in matrix algebras over the continuous field C*-algebra.
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Theorem 1.4. Under the same situation as Theorem 1.3, it s deduced from that
forx=10,1,

K. (A% G) 2 K. (AR C*(G))

under the assumption that the K-groups of A X4 G for t € [0,1] are locally contin-
UOUS.

Suppose that any projection (or unitary) in matriz algebras over A x, G (or
its unitization) is connected to a projection (or unitary) in matriz algebras over
A® C*(G) by projections (or unitaries) in matriz algebras over the continuous field
C*-algebra T'([0, 1], {Bt}iep0,1)) of Theorem 1.3. Then

K. (A%, G) 2 K, (AR CHG))

for x = 0,1 without the assumption on the K-groups above.
Furthermore, if G is non-amenable, then one can replace A x4 G with A X7, G,
and A ® C*(G) with A ® C(G) respectively.

Proof. The existence of the continuous field C*-algebra of Theorem 1.3 ensures that
any projection (or unitary) in matrix algebras over the fibers (or their unitizations)
is locally connected to a projection (or unitary) in matrix algebras over the near
fibers. In fact, this follows from direct computations (or usual spectral theory) by
using norm continuity of projections (or unitaries) in matrix algebras over the fibers.

See the detailed proof of Theorem 2.1 below since the strategy is the same. O
Similarly as Theorem 1.4, for the equivariant K-theory we obtain.

Theorem 1.5. Let (A, H, o) be a C*-dynamical system for A a C*-algebra, H an
amenable locally compact group and o an action, and G be a compact group such
that (A xo H,G,B) is a C*-dynamical system for an action 3. Suppose that o is
deformably trivial. Then there exists a continuous field of C*-algebras between the
crossed product A xq H xg G and A® C*(H) xg0 G, where B° is an action induced
by a deformation from a to the trivial action.

Therefore, for * = 0,1,

KC (A xg HY = K (U xo H x5 G)
= K.(AQ®C*(H) »go G)
> K7 (U@ C*(H))
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under the assumption that the K-groups of the fibers A x gy H x50 G fort € [0,1] are
locally continuous, where {ﬁt}te[o,l] is a deformation between B = (' and B9 induced
by the deformation of a.

Furthermore, suppose that any projection (or unitary) of matriz algebras over the
fibers is connected by projections (or unitaries) in matriz algebras over the continu-
ous field C*-algebra. Then for x = 0,1,

KC (U %o H) 2 KE (A C*(H))
without the assumption on the K-groups above.

Proof. See the proof of Theorem 2.3 below. O

Remark. By replacing crossed products for actions with twisted crossed products for
twisted actions, we obtain the same results as Theorems 1.3 and 1,4 under the same
assumptions, and also obtain the same as Theorem 1.5 by defining the equivariant
K-theory for twisted dynamical systems by compact groups to be the K-theory of
their twisted crossed products. Also, Theorems 1.3, 1.4 and 1.5 suggest that it is
important to know continuous deformation of actions (or twisted actions), that is,
homotopy classes of actions (or twisted actions). The research on this point would

possibly be done elsewhere.

2. CROSSED PRODUCTS BY R

Theorem 2.1. Let (A, R,a) be a C*-dynamical system of a C*-algebra A by an
action a of R. Then there exists a continuous field of C*-algebras between the
crossed product A o R and A ® C*(R). Therefore, for x =0,1,

K.(A %, R) = K, (A® C*(R))
under the assumption that the K-groups of the fibers A X4 R for s € [0, 1] are locally
continuous, where actions a® are defined by of = as for s,t € R.
Furthermore, suppose that any projection (or unitary) of matriz algebras over the

unitizations of the fibers is connected by projections (or unitaries) in matric algebras

over the continuous field C*-algebra. Then we have
K. %, R) = K, (A® C*(R))

or * = 0,1 without the assumption on the K-groups above.
b
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Moreover, the group R may be replaced with T in those (restricted) Thom iso-
morphisms for crossed products by R.

Proof. We consider a deformation from the crossed product 2 x, R to the tensor
product A ® C*(R) as follows. Define actions a® for s € [0,1] by
a;(a) = aq(a)
for t € R and a € A. Then a! = a and a? is trivial. Also, we have
[l (@)l = Nl ()] < llez(a) = o (a)ll = llese(a) — qur(@)]-

Note that the crossed products Ax s R, AxyuR for s,u € [0, 1] are not isomorphic
in general since the products of these crossed products are not the same (but they
may be isomorphic for specific s,u). See Example 2.7 below. Our claim is that the
actions a® for s € [0, 1] induce a deformation from A x4 R to A ® C*(R), that is,
there exists the C*-algebra of a continuous field on [0,1] with fibers A x4s R for
s € (0,1] and fiber 2 ® C*(R) at 0, denoted by I'([0, 1], {2 Xas R}scpo,1). Indeed,
the norm continuity for generating elements of the crossed products 2 x4« R and
the tensor product A ® C*(R) follows from Proposition 1.1. Also, the C*-algebra
[([0, 1], {2 as R} s¢[0,1)) may be defined as the completion of the family of all identity
sections: [0,1] 2 s = Y- a;f; € A xas R for a; € A and f; € LY(R). Therefore,
any element of I'([0, 1], {% Xas R}s¢(0,1)) may take values lim, )~ a;f; in the fibers
A X4 R, where lim, for s € [0,1] mean the limits in the fibers.

Now suppose that [ps] — [1;] € Ko(2 xqs R) (a canonical class and a generator)
for some 1 <[ < n, and ps a projection of the n X n matrix algebra M, (A x4s R)
over the unitization 2 x4s RT for some n > 1, and 1; the [ x [ identity matrix,
where [m(ps)] = [1i] € Ko(C) by definition of Ko(2 xqos R) under the following exact

sequence:
0 —— Mp(AxXgs R) —— M, (A xqe RY) —— M, (C) —— 0.

Then p, is a limit of matrices s* with s*¥ = (sfj,)\fj), )\fj € C and the ij-
components sfj finite sums of afj il;‘ for afj € U and Z-’; € L'(R). Since the operator
field: [0,1] 3 t + p; = lim; s* is continuous, p; for t near s are projections by
standard functional calculus. We use this argument for generators of Ko(2 x4s R).
As for Ki-groups, we replace projections p; with unitaries in matrix algebras over
A x4t RT. Therefore, by using connectivity of those projections or unitaries we
obtain

Ki(A Xgs R) =2 K, (A Xgu R)
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for + = 0,1 and s,u € [0,1].

The second claim follows from the argument above about the local continuity of
either projections or unitaries.

For the system (2, T, 3), we define actions 3¢ for s € [0, 1] by

B:(a) = B2+ (a)

for z € T and a € A. Thus, the last claim follows from the same argument as
above. O

Remark. Similarly, we can define a deformation from A x, R™ to % ® C*(R") by
defining actions o for s € [0,1] by of = ay for t = (¢;) € R", where st = (st;).
Hence, under the assumptions on either the K-groups of & x4, R™ for s € [0, 1] to

be locally continuous, or connectivity of projections (or unitaries) we obtain
KA %o R") = K, (52[ ® C*(IR”))

for ¥ = 0,1. Without the assumptions above, the isomorphisms in fact do hold (see
the Remark of Corollary 2.2 below). Also, those technical but certainly reasonable

assumptions are not satisfied in general.
Moreover, we obtain.

Corollary 2.2. Let 2 be o C*-algebra, G a simply connected solvable Lie group with
dimG = n and A ¥, G their crossed product for an action a. Then there exists a
continuous field of C*-algebras between the crossed product A xo G and A® C*(R™).
Thus, for x = 0,1,

K.(% %0 G) = K (A® C*(R™))
under the assumption that the K-groups of the fibers deformed from A x, G to
A® C*(R™) are locally continuous.

Furthermore, suppose that any projection (or unitary) of matriz algebras over the
fibers is connected by projections (or unitaries) in matriz algebras over the continu-
ous field C*-algebra. Then the isomorphisms of the K-groups above hold without the
assumption on the K-groups above.

Similarly, there exists a continuous field of C*-algebras between the crossed prod-
uct A Xy G and A @ C*(G) so that we have

K% %14 G) 2 K, (% ® C*(G))

for x = 0,1 under the same assumptions above.
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Proof. Note that G is isomorphic to a successive semi-direct product by R:
G=( RXaR) Mgy R--+) 4o, R
for n = dim G, where o; (2 < j < n) are actions by R (Iwasawa [5]). Then we have
A X G (- (A NgR) Xy R+ ) xon R,

a successive crossed product by R (¢f. Blackadar [1]). By using the method in the
proof of Theorem 2.1, each o; is deformed to the trivial action. Hence we obtain a
deformation from 2 %, G to A Q@ C*(R™). By using the method of Theorem 2.1, we
obtain the conclusions.

For the last claim, note that there exists a continuous deformation of actions
between a and the identity action by of = ag for s € [0,1] and st = (st;)}_; € G
under the isomorphism of G above. 0

Remark. By using the Fourier transform and the Bott periodicity, .we have
Ko (A %o G) = K, (A © C*(R™))

= K.(A® Co(R™))

= Kian(2)
for x = 0,1, where * + n means * + n {mod 2), and Co(R") is the C*-algebra of
continuous functions on R” vanishing at infinity. In particular,

K,(UA %o R) = K1 ().

This is the amazing Connes’ Thom isomorphism for crossed products by R Connes
[2] (¢f. Blackadar [1]). The proof for this is (in part) based on the Takai duality for

crossed products of C*-algebras by abelian groups. Thus the method for our result

above is quite different from that of Connes.

Moreover, our method is applicable to the case in the eqivariant K-theory as

follows:

Theorem 2.3. Let (A, R,a) be a C*-dynamical system of a C*-algebra 2 by an
action a of R, and G be a compact group such that (A xR, G, B) is a C*-dynamical
system. Then there exists a continuous field of C*-algebras between the crossed
product U x4 R x5 G and A ® C*(R) x50 G, where 0 is a deformed action from
B associated with o continuous deformation from « to the trivial action. Therefore,

we obtain

K, (A xR xgG) = K (AR C*(R) x50 G)
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for x = 0,1 if the K-groups of the fibers A x4s R xgs G for s € [0,1] are locally
continuous, where {f°}c(0,1) i a deformation between B and B9 induced by the
deformation of .

Furthermore, suppose that any projection (or unitary) of matriz algebras over the

fibers is connected by projections (or unitaries) in matriz algebras over the continu-
ous field C*-algebra. Then for x = 0,1,

KC (% %, R) = K (A® C*(R)),
where K (-) mean the equivariant K-groups associated with the C*-dynamical system
(A x4 R, G, B) and a (deformed) C*-dynamical system (A ® C*(R), G, B°).
Furthermore, if B° is deformably trivial, there ezists a continuous field of C*-

algebras between the crossed product A® C*(R) xg0 G and A® C*(R) ® C*(G), and

under the similar assumptions as above we have
KC(A® C*(R)) = K. (%4® C*(R) ® C*(G)).

Proof. As the same as the proof of Theorem 2.1, we consider a deformation from
A xR to AR C*(R) with fibers A x4s R for s € [0,1]. Let (7,U) be the universal
representation associated with the C*-dynamical system (4 x4 R, G, ) such that
Ugn(a)U; = m(By(a)) for a € Axa R and g € G. Then the systems (A x4« R, G, 5°)
can be induced from their universal covariant representations (U*, 7®) defined by
Ugn®(a)(Ug)* = n*(Bg(a)) for a € A xqas R and g € G since the restrictions of the
actions B° to the dense parts of 2 x4+ R (see Proposition 1.1) are defined as the
same as 3. Note that for x =0, 1,

K& (U x5 R) 2 Ko (A xgs R xgs G)
for s € [0,1] (¢f. Blackadar [1], Section 11.7). Then we assert that
K*(Ql A s R )4'3.9 G) = K*(Q[ Nyt R )4[3! G)

for any s,t € [0,1]. This follows from that there exists a deformation from 2 X,
R x5 G to (A ® C*(R)) xgo G with fibers ™A x4s R %gs G for s € [0,1], and the
assumptions, where 3% may be nontrivial in general. Note that since G is compact,
it is amenable so that we can use Proposition 1.1 for the dense parts of the crossed
products A x4s R xgs G for s € [0,1]. Therefore, under the assumptions we have

KS(U xqR) 2 K, (A xo R x5 G)
= K*(Q[ H s R N gs G)
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= K, ((A® C*(R)) xg0 G)
=~ KG(A ® C*(R)),

as desired. Furthermore, we can continue this process to A ® C*(R) ® C*(G) if g9
is deformably trivial. 0

Remark. By using the Bott periodicity for the equivariant K-theory, we have
KSR ® C"(R)) = K9(A® Co(R)) = K, ,(2)

for ¥ = 0,1, where * + 1 means * + 1 (mod 2).

Corollary 2.4. With the notations and assumptions as in Theorem 2.3, we have
K*G(m Xo R) & K§+1(m),
the (restricted) Thom isomorphism for the equivariant K -theory. Moreover, for H
a simply connected solvable Lie group with n = dim H, we have
KC (@ xa H) = KC, ().

Remark. This (restricted) formula(s) should be new.

Recall that a connected Lie group G is decomposed into a successive semi-direct
product by R or T:
G=HyxHyx---xHy
with n = dimG and H; 2R or T for 1 < j < n (c¢f. Iwasawa [5]). Thus, A x4 G is
decomposed into a successive crossed product by R or T:

Axg G (- ((Ax Hy) ¥ Hy) %+ ) X Hy.

Theorem 2.5. Let A be a C*-algebra, G a connected Lie group and A x4 G their
crossed product for an action «. Suppose the similar assumptions as in Theorems
2.1 and 2.3 for A x4 G decomposed into the successive crossed product as above.
Then for x = 0,1,

Ko (2 xa G) 2 KIL (),
where dim G = k + 1 for some k > 0, and G is decomposed into a successive semi-

direct product as above involving R I-times and T k-times.

Proof. By using the method of Theorems 2.1 and 2.3 repeatedly, there exists a
continuous deformation from 2A x4 G to A Q@ C*(H;) @ --- @ C*(Hy) so that we

obtain the conclusion. Note that actions of T on the tori are always trivial. il
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Finally, we give a couple of examples in the following:

Example 2.6. Let K be the C*-algebra of all compact operators on a separable
infinite dimensional Hilbert space. Let Co(R) %, R be the crossed product of Co(R)
by R with 7 the left translation. Then it s known that Co(R) x, R = K. Therefore,
for x=0,1,
K. (Co(R) x; R} = K,(K) & K.(C),

and Ko(C) = Z and K1(C) = 0, while

K. (Co(R) ® C*(R)) = K.(Co(R?)) & K,(C)
by using the Bott periodicity.

Example 2.7. Let C(T") xg R be the crossed product of C(T") by R with © the
multi-rotation defined by ©4(z;) = (€*™®'2;) fort € R, (2;) € T and § an irrational
number. Since the crossed product is regarded as a foliation C*-algebra of Connes,
it 1s known that
C(T") xg R = (C(T"!) xg Z) ® K,
where the crossed product C(T" ) xg Z is a noncommutative torus (cf. Sudo [13]).
Therefore, for x = 0,1,
K.(C(T") xo R) & K, (C(T") %o Z) 8 K)

=~ K (C(T" V) xe Z) 2277,
where the last isomorphism is obtained by using Pimsner- Voiculescu exact sequence
for crossed products by Z (cf. Blackadar [1}). On the other hand, for x = 0,1,
K (C(T") ® C*(R)) = K.yt (C(T7)) = Z
As a note, let C(T™) xgs R be the crossed products deformed from C(T") xg R with
actions ©° defined by ©3(z;) = (€*™tz;). Then they are not isomorphic in general
since the crossed products C(T"" 1) xgs Z are so (cf. Rieffel [11]).

on—1

Example 2.8. Let C(T)x, T be the crossed product of C(T) by the left multiplication
of T on T. Then the crossed product is tsomorphic to K the C*-algebra of compact

operators. Hence,
K. (C(T) . T) & K,(K) = K,.(C)
for x = 0,1, while
K.(C(T) ® C*(T)) = K.(C(T) ® Co(Z)) = dzZ
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for x =0,1. Therefore, this is a counterexample to the problem in the introduction.
This example suggests that an obstruction to the isomorphism in the problem is that
T is not contractible, but T is deformably trivial in our sense, however the K-groups
are not continuous at zero. This phenomenon would be analyzed somewhere else in
the future.
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