J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 12, Number 1 (February 2005), Pages 47-55

A FUNCTIONS AND ITS GRAPH FUCTION

G. I. CHAE, V. P. SINGH, Y. S. PARK, AND R. P. GIHARE

ABsTRACT. For topological spaces X, Y and the function f: X — Y, it induces a
function g-(f) : X — X x Y defined as ¢.(f)(z) = (z, f(z)), for every z € X. It
deals with some preliminary investigations relating to the behavior of functions and
its graph functions. It has also been found that continuous functions are homotopic
if and only if their graph functions are homotopic.

1. INTRODUCTION

In literature, the mutual relationships between functions and their graph func-
tions have appeared here and there in the context of some particular type of func-
tions, e.g., Kohli [6] and Levine [7]. Therefore, it is being attempted to exam-
ine closely several variants between functions and their graph functions systemati-
cally. A function f : X — Y induces a function g,.(f) : X — X x Y defined as
g-(f)(z) = (z, f(z)), for every z € X and is called its graph function. We list and
investigate some definitions, terms and terminologies used throughout this paper
to deal with some properties relating to the behavior of functions and its graph
functions.

Throughout this paper X, Y and Z will denote topological spaces. Let A C X.
Cl(A) and Int(A) denote the closure and interior of A respectively. And 7(X),
7(X,z) and 7(X, A) denote a class of all open sets of X, a class of all open sets of X
containing € X and a class of all open sets of X containing A C X respectively.

Definition 1.1. f : X — Y is called almost continuous (¢f. Husain [4]) if for

neighborhood of f(z), (f~1(V)) is a neighborhood of z.
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It is known that f: X — Y is almost continuous iff for each x € X and each
V e 7(Y, f(z)), there is a U € 7(X, x) such that f~1(V) is dense in U.

Definition 1.2. f: X — Y is called c-continuous (¢f. Long & Carnahan [10]) if
for each point z € X and each V € 7(Y, f(z)) such that Y — V is compact, there is
a U € 7(X,z) such that f(U) C V.

It is known in Long & Carnahan [10] that f : X — Y is c-continuous iff if for
each V € 7(Y) and having compact complement, f~1(V) € 7(X).

Definition 1.3. f: X — Y is called s-continuous (c¢f. Kohli [6]) if for each point
z € X and each V € 7(Y, f(z)) such that Y — V is connected, thereisa U € 7(X, z)
such that f(U) C V.

It is known that f : X — Y is s-continuous iff for each V € 7(Y) and having
connected complement, f~1(V) € 7(X).

Definition 1.4. f: X — Y is called weakly continuous (cf. Noiri [11]) if for each
point z € X and each V € 7(Y, f(z)), thereisa U € 7(X, z) such that f(U) c CK(V).
It is known that f : X — Y is weakly continuous iff for each

Ver(y), (V) cInt (F71(CUV))).

Definition 1.5. f: X — Y is said to be irresolute (cf. Crossley & Hilderbbrand
[2]) if for any semi-open set S of Y, f~!(S) is semi-open in X. It may be noted
that a set A is said to be semi-open in Levine [7] if there is an O € 7(X) such that
O c A C ClO).

It is easy to prove that f : X — Y is irresolute iff for each z € X and each
V € SO(Y, f(z)), there is a U € SO(X, z) such that f(U) C U.

2. GRAPH FUNCTIONS

We begin with defining closeness of graphs of functions and their graph functions,
and then investigate properties of functions that are transferred to their graph func-
tions and vice-versa.

Let f: X = Y be a given function. Then G; = {(=z, f(z)) : z € X} is called
the graph of f. f is said to have closed graph if Gy is closed in the product space
X x Y. Equivalently f is said to have closed graph (cf. Long [8]) if for each pair
y # f(x), there exist a U € 7(X,z) and a V € 7(Y,y) such that f(U)NV = .
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Likewise, for a function f : X — Y we define that its corresponding graph
function g,(f) : X — X X Y has closed graph.

Definition 2.1. The graph function ¢,(f) : X — X x Y is said to have closed
graph if for each pair (z,y) # g-(f)(t), there exist a U; € 7(X,t) and a U, € 7(X, z)
respectively and a V, € 7(Y,y) such that

g (NUIUe x V) = @
where

gr(NU] = {(w, f(w)) : w e Ut}

Proposition 2.1. f: X — Y is continuous if and only if its graph function g.(f) :
X = X xY is continuous.

Proof. The proofs are obtained immediately from Dugundji [3, Theorem 2.2], be-
cause Py o g.(f) = f where projection Py : X xY — Y is continuous. O

In Husain [4] it has been found that composition of almost continuous mappings
need not be almost continuous (¢f. Husain [5, Proposition 6]). For our purpose, in

the positive direction, we state the following results, which is proved in Noiri [12].

Proposition 2.2. Let f : X — Y be almost continuous mapping and g : ¥ — Z

be continuous. Then go f: X — Z is almost continuous.

From Long [9, Theorem 2] which is proved by Proposition 2.2, we know that
f: X = Y be almost continuous if and only if its graph function ¢,(f) : X — X xY
is almost continuous. And from Noiri [11, Theorem 1], we know that f: X — Y is
weakly continuous if and only if g,(f) : X = X x Y is weakly continuous. Similar
investigations led the referee in a paper of Kohli [6] pose a question concerning the
reverse implication of his Theorem 2.7 stating that if f: X — Y is a function from
a connected space X into a space Y such that graph function is s-continuous, then
f is s-continuous. Similar is the cases with c-continuous and irresolute mappings.
We could derive implication in one way only. The reverse implications in these cases

are open questions.
Proposition 2.3. If g,(f): X — X xY is irresolute, then f : X — 'Y s irresolute.

Proof. Since the projection Py : X x Y — Y is continuous and open, and is thus
irresolute from Crossley & Hilderbbrand {2, Theorem 1.2], Pyog,(f) = f is irresolute
from Crossley & Hilderbbrand [2, Theorem 1.7]. a
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Proposition 2.4. Let f : X = Y be c-continuous. Then g,(f) : X - X xY is

c-continuous.

Proof. Let U xV e (X xY) and let K = (X xY) — (U x V) be compact. Then
X x (Y — V) is compact because X x (Y — V) is a closed subset of compact set
K:kx—wxﬂL”Xxw—vﬁ
Hence
Pr(Xx(Y-V)=Y-V

is compact. Since f is c-continuous, f~}(V) € 7(X ) Therefore,

g (MU X V) =U[)F7X X)-

Thus g,(f) is c-continuous. O

Converse implication of the above proposition could not be settled. However, it
holds whenever X is assumed to be compact. For our purpose we state the following

results which is proved in Long & Carnahan [10].

Proposition 2.5. Let X be a compact space. Then g.(f) : X = X xY 15 c-
continuous if f: X — Y is c-continuous.

Proposition 2.6. Let the graph function g.(f) : X — X x Y have closed graph.
Then the graph of f: X — Y 1is closed.

Proof. Let y # f(x). Then (z,y) ¢ g-(f)(z). This means (z,y) # (z, f(x)). Thus
(z,y) # g-(f)(z). Since g(f) has closed graph, there exist a U € 7(X,z) and a

V e 7(Y,y) such that g.(f)(U)(U x V) = @. So we have

(V=2

Therefore, f has closed graph. O

We disprove its converse by illustrating an example.

Ezample 2.1. Let X be an infinite set equipped with cofinite topology and f: X —
X be the constant mapping defined as f(z) = y for every z € X, where y is a fixed
element of X. Then f has closed graph from Chae, Singh & Misra [1, Proposition
3.2], but the graph of g,(f) is not closed. To this end, let (z,y) # g-(f)(y) for every
z € X, then z # y. Obviously for each U € 7(X,z) and each V € 7(X,y), we have

g (NWVU V)=V x{gH[JUxV)=UNV)x {y}.
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Since topology on X is cofinite, UNV # &. So

a(HMNUxV) #@.
Hence the graph of g,(f) is not closed.

In the context of this example, the following result may be stated.

Proposition 2.7. Let X be a Tz-space and f: X — Y be a function with closed
graph. Then
g(f): X=X xY

has closed graph.

Proof. We prove it analytically by making just two cases that suffice our purpose.

[Case 1] Let ¢t # z for any pair (z,y) # ¢-(f)(t). Then (z,y) # (¢, f(¢)). Since
X is a Ty-space, there exists U € 7(X,z) and U* € 7(X,t) such that UNU* = .
This implies that
w(HUHUxV)=2
for any arbitrary V € 7(Y,y).

[Case 2] Let (z,y) # g-(f)(z). Then (z,y) # (z, f(z)) and so y # f(z). Since
f has closed graph, there exist an O € 7(X,z) and a W € 7(Y,y) such that

f(O)NW = 2. Hence
9-(f)(0) ﬂ(O x W)= @.
Thus g,(f) has closed graph. O

Combining the above Proposition 2.6 and Proposition 2.7, we have the following

result.

Proposition 2.8. Let X be a Ty-space. Then f: X — Y has closed graph if and
only if gr(f) has closed graph.

Proposition 2.9. Let g.(f): X — X xY be a closed function, then f: X =Y is
a closed function.

Proof. Let F be any closed subset of X. To show f(F) = f(F), let y ¢ f(F). Then
(F x {yH[(o-(H(F) = 2.

So we obtain
o (N ' Fx{y}) c X - F. (a)
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Since g,(f) is a closed function, g,(f)(F) = {(z, f(z)) : = € F} is closed in the
product space X x Y. This means g.(f) has closed graph on F. Since y € f(F)
implies y # f(z) for every = € F, there exist U, € 7(X,z) and V € 7(Y,y) such
that ¢, (f)(Uz) NV = @. Putting

U= |JU,Uer(X,F).
zeF
So we obtain
UxVer(XxY,Fx{y}). (b)

Thus from (a), (b) and Crossley & Hilderbbrand [2, Theorem 11.2], there exists a

UxVer(XxY,Fx{y})

such that
g (N HEF > {y}) Clgr(HINU X V)C X~ F.
Thus
o (PP U xV) =2
and so
V() f(F) =2.

Hence y ¢ f(F) because of V € 7(X x Y,y) and so f(F) = f(F). Therefore, f is

a closed functioq. ]

It is very easy to check that if g-(f) : X - X x Y is open, then f: X - Y
is also open which follows directly from f = Py o g.(f), indicating that f is the
composition of open mappings and hence open. Therefore, we obtain the following

obvious conclusion, which is stated for the sake of completeness.

Proposition 2.10. If g,(f) : X — X x Y is open(closed), then f : X — Y s
open(closed).

3. GRAPHICAL HoMOTOPY

The theory of homotopy plays a vital role in the study of algebraic topology, as
you know. This theory is based on continuous deformation of continuous mappings.
The concept of being homotopic has been introduced through continuous deforma-

tion of their graph functions in this section. After having formalized this notion, we
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have examined its relationship with usual known concept of homotopy for the class
C(X,Y) of continuous mappings from topological space X into Y.

It is known in Dugundji [3] that for f, f* € C(X,Y), f is said to be homotopic
to f* if there is a continuous map F : X x I — Y such that F(z,0) = f(z) and
F(z,1) = f*(z), for every z € X, where I = [0, 1] denotes the parameter space. We
say that the function F' is a homotopy between f and f*. Likewise we define a kind
of homopoty between graph functions and then investigate their properties.

Definition 3.1. Let f, f* € C(X,Y). Then f is said to be graphically homotopic
to f* if there exists a continuous mapping F': X x I — X x Y such that F(z,0) =
gr(f)(z) for every z € X and F(z,1) = g-(f*)(z) for every z € X where I = [0,1]
denotes the parameter space. Equivalently, f is to be graphically homotopic to f*
if and only if g.(f) is homotopic to g-(f*). We say the function F' is a graphical
homotopy between g¢,(f) and g,(f*).

Ezample 3.1. Let f, f* € C(R,R). Define F : RxI — R x R as F(z,t) =
(1-t)(z, f(z) + t(=, f*(2)), i. e, F(z,t) = (1 —t) g:(f)(x) +t g.(f*)(z) for every
z € X and t € [0,1]. Then g,.(f) and g,(f*) are continuous from Proposition 2.1
and their linear combination must also be continuous. Thus F(z,t) is continuous.
Moreover, we have F(z,0) = g-(f)(z), for every z € X and F(z,1) = g.(f*)(z),
for every z € X. Hence F is the required graphical homotopy between g¢,(f) and

9-(f7).

Here arises a question as to what relationship between homotopy and graphical

homotopy of two continuous functions exists.

Proposition 3.1. Let f, f* € C(X,Y). Then f are graphically homotopic to f* if
and only if f is homotopic to f*.

Proof. Assume that f is graphically homotopic to f*. Then there exists a homotopy
F:X xI— X xY between ¢g,(f) and g-(f*). From a composition X x | il
XxY Py, Y, let H = Py o F. Then H is continuous, for the homotopy F' and Py
are continuous. Moreover H(z,0) = Py (F(z,0)) = Py(g-(f)(z)) = f(z) for every
z € X. Similarly, we have H(z,1) = f*(z) for every z € X. So f is homotopic to
I

Conversely, let f be homotopic to f*. Then there exists a continuous function
H: X xI =Y such that H(z,0) = f(z) for every z € X and H(z,1) = f*(z) for
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each z € X. Define F: X x I -+ X xY as F(z,t) = (z, H(z,t)) for each z € X
and each £ € I. Then we have to show that F' is a graphical homotopy between
gr(F) and gr(f*). To prov that F is continuous, let U x V € 7(X x Y, (z, H(z,t)).
Then for the V € 7(Y), there exist a W € 7(X,z) and a O € 7(I,t) such that
H(W x O) C V, because H is continuous. Putting N = U{(W, N € 7(X,z) and
so (N x O) € 7(X x I,(z,t)). Hence there is a (N x O) € 7(X x I) such that
F(INxO)CcUxYV.

Thus F is continuous. Moreover, F(z,0) = (z, H(z,0)) = (z, f(2)) = ¢-(f)(z)
for every z € X. Similarly we have F(z,1) = g,(f*)(z) for every z € X. Therefore,
f is graphically homotopic to f*. O
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