ON A CLASS OF MEROMORPHICALLY *P*-VALENT STARLIKE FUNCTIONS

NENG XU AND DINGGONG YANG

ABSTRACT. Let $\Sigma(p)(p \in N)$ be the class of functions $f(z) = z^{-p} + a_{1-p}z^{1-p} + a_{2-p}z^{2-p} + \cdots$ analytic in 0 < |z| < 1 and let $M(p, \lambda, \mu)(0 < \lambda \le 2)$ and $2\lambda(\lambda - 1) \le \mu \le \lambda^2$ denote the class of functions $f(z) \in \Sigma(p)$ which satisfy

$$\left(\operatorname{Re}\frac{zf'(z)}{pf(z)}\right)^{2} + \mu > \left|\frac{zf'(z)}{pf(z)} + \lambda\right|^{2} \quad (|z| < 1).$$

The object of the present paper is to derive some properties of functions in the class $M(p, \lambda, \mu)$.

1. Introduction

Let S be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic and univalent in the unit disk $E = \{z : |z| < 1\}$. Let S^* and K denote the usual subclasses of S consisting of starlike and convex functions, respectively. And let $UCV(\subset K)$ be the class of functions called uniformly convex and introduced by Goodman [3]. In Ronning [6], Ronning investigated the class S_p defined by

$$S_p = \{ f(z) \in S^* : f(z) = zg'(z), g(z) \in UCV \}.$$

It was shown in Ronning [6] and Ma & Minda [4] that a function of the form (1.1) is in S_p if and only if

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > \left| \frac{zf'(z)}{f(z)} - 1 \right| \quad (z \in E).$$

Received by the editors May 26, 2004 and, in revised form, February 16, 2005. 2000 Mathematics Subject Classification. 30C45.

Key words and phrases. meromorphic, p-valent starlike, subordination.

The uniformly convex and related functions have been studied by several authors (see, e. g., Dixit & Misra [1], Ma & Minda [4], Owa [5], Ronning [6] and Srivastava & Mishra [7]).

Let $\sum (p)(p \in N = \{1, 2, 3, ...\})$ be the class of functions f(z) of the form

$$f(z) = z^{-p} + \sum_{n=1}^{\infty} a_{n-p} z^{n-p}$$
(1.2)

which are analytic in the punctured unit disk $E_0 = \{z : 0 < |z| < 1\}$. A function $f(z) \in \sum(p)$ is said to be meromorphically p-valent starlike of order α if it satisfies

$$-\operatorname{Re}\frac{zf'(z)}{f(z)} > p\alpha \quad (z \in E)$$
(1.3)

for some $\alpha(0 \le \alpha < 1)$. We denote by $\sum^*(p,\alpha)(0 \le \alpha < 1)$ the subclass of $\sum(p)$ consisting of functions which are meromorphically p-valent starlike of order α .

In this paper we introduce and investigate the new subclass of $\sum (p)$ as follows.

A function $f(z) \in \sum(p)$ is said to be in the class $M(p, \lambda, \mu)$ if it satisfies the condition

$$\left(\operatorname{Re}\frac{zf'(z)}{pf(z)}\right)^2 + \mu > \left|\frac{zf'(z)}{pf(z)} + \lambda\right|^2 \quad (z \in E), \tag{1.4}$$

where λ and μ are real such that

$$0 < \lambda \le 2, \quad 2\lambda(\lambda - 1) \le \mu \le \lambda^2. \tag{1.5}$$

Note that for $\lambda = 1$ and $\mu = 0$,

$$M(p,1,0) = \left\{ f(z) \in \Sigma(p) : -\operatorname{Re} \frac{zf'(z)}{pf(z)} > \left| \frac{zf'(z)}{pf(z)} + 1 \right| \quad (z \in E) \right\}.$$

Let f(z) and g(z) be analytic in E. Then we say that the function f(z) is subordinate to g(z) in E, written $f(z) \prec g(z)$, if there exists an analytic function w(z) in E such that $|w(z)| \leq |z|$ and f(z) = g(w(z)) for $z \in E$. If g(z) is univalent in E, then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(E) \subset g(E)$.

In proving our results, we need the following lemmas.

Lemma 1.1. Let f(z) be analytic in E with f(0) = 0 and let $g(z) \in S^*$. If $f(z) \prec g(z)$, then

$$\int_0^z \frac{f(t)}{t} dt \prec \int_0^z \frac{g(t)}{t} dt.$$

Lemma 1.2. Let

$$f(z) = \sum_{n=1}^{\infty} a_n z^n \prec g(z)$$

and $g(z) \in K$. Then $|a_n| \leq 1 (n \in N)$.

Lemma 1.1 is due to Suffridge [8] and Lemma 1.2 can be found in (cf. Duren [2, p. 195]).

2. Properties of the class $M(p, \lambda, \mu)$

Theorem 2.1. A function f(z) in $\Sigma(p)$ belongs to $M(p,\lambda,\mu)$ if and only if

$$-\frac{zf'(z)}{pf(z)} \prec h(z), \tag{2.1}$$

where

$$h(z) = \lambda - \frac{\mu}{2\lambda} + \frac{2\lambda}{\pi^2} \left(\log \frac{1 + \sqrt{(z+\beta)/(1+\beta z)}}{1 - \sqrt{(z+\beta)/(1+\beta z)}} \right)^2,$$

$$\beta = \left(\frac{e^b - 1}{e^b + 1} \right)^2 \quad and \quad b = \frac{\pi}{2\lambda} \sqrt{2\lambda(1-\lambda) + \mu}.$$
(2.2)

Proof. Define the function w(z) = u + iv by

$$w(z) = -\frac{zf'(z)}{pf(z)}.$$

Then the inequality (1.4) can be rewritten as $u^2 + \mu > (\lambda - u)^2 + v^2$, which, in view of $\lambda > 0$, is equivalent to

$$u > \frac{1}{2\lambda} \left(v^2 + \lambda^2 - \mu \right). \tag{2.3}$$

Thus the domain of values of $-zf'(z)/(pf(z))(z \in E)$ is contained in the region

$$D = \{w = u + iv : u \text{ and } v \text{ satisfy } (2.3)\}.$$

It follows from (2.2) that

$$h(0) = \lambda - \frac{\mu}{2\lambda} + \frac{2\lambda}{\pi^2} \left(\log \frac{1 + \sqrt{\beta}}{1 - \sqrt{\beta}} \right)^2 = 1.$$

In order to prove our theorem, it suffices to show that the transformation w = h(z) defined by (2.2) maps E conformally onto the region D.

From (1.5) we have

$$0 \le \frac{\lambda^2 - \mu}{2\lambda} < \min\left\{\lambda - \frac{\mu}{2\lambda}, 1\right\}.$$

Consider the transformations

$$w_1 = \sqrt{w - \left(\lambda - \frac{\mu}{2\lambda}\right)}, \quad w_2 = \exp\left(\pi w_1 \sqrt{\frac{2}{\lambda}}\right), \quad t = \frac{1}{2}\left(w_2 + \frac{1}{w_2}\right).$$

It can be verified that the composite function

$$t = \operatorname{ch}\left(\frac{\pi}{\lambda}\sqrt{2\lambda w - (2\lambda^2 - \mu)}\right) \equiv \varphi(w)(\operatorname{say})$$

maps $D^+ = D \cap \{w = u + iv : v > 0\}$ conformally onto the upper half plane $\mathrm{Im} t > 0$ so that $w = \frac{\lambda^2 - \mu}{2\lambda}$ corresponds to t = -1 and $w = \lambda - \frac{\mu}{2\lambda}$ to t = 1. With the help of the symmetry principle, the function $t = \varphi(w)$ maps D conformally onto the region $G = \{t : |\arg(t+1)| < \pi\}$.

Since

$$t = 2\left(\frac{1+\zeta}{1-\zeta}\right)^2 - 1$$

maps the unit disk $|\zeta| < 1$ onto G, we see that

$$w = \varphi^{-1}(t) = \lambda - \frac{\mu}{2\lambda} + \frac{\lambda}{2\pi^2} \left(\log(t + \sqrt{t^2 - 1}) \right)^2$$
$$= \lambda - \frac{\mu}{2\lambda} + \frac{2\lambda}{\pi^2} \left(\log\frac{1 + \sqrt{\zeta}}{1 - \sqrt{\zeta}} \right)^2$$

maps $|\zeta| < 1$ conformally onto D so that $\zeta = \beta \in (-1,1)$ corresponds to w = 1. Now we easily know that the function w = h(z) maps E conformally onto the region D. Hence the proof of the theorem is completed.

Corollary 2.1. If $f(z) \in M(p, \lambda, \mu)$, then $f(z) \in \Sigma^*(p, \frac{\lambda^2 - \mu}{2\lambda})$. The result is sharp with the extremal function

$$f_0(z) = z^{-p} \exp\left(-p \int_0^z \frac{h(t) - 1}{t} dt\right) \in M(p, \lambda, \mu),$$
 (2.4)

where h(z) is given by (2.2).

Proof. Using the inequality (2.3) in the proof of Theorem 2.1, we have

$$-\operatorname{Re}\frac{zf'(z)}{pf(z)} > \frac{\lambda^2 - \mu}{2\lambda} \ge 0 \quad (z \in E),$$

that is, f(z) is meromorphically p-valent starlike of order $\frac{\lambda^2 - \mu}{2\lambda}$. Noting that

$$-\operatorname{Re}\frac{zf_0'(z)}{pf_0(z)} = \operatorname{Re}h(z) \to \lambda - \frac{\mu}{2\lambda} + \frac{2\lambda}{\pi^2} \left(\log\frac{1+i}{1-i}\right)^2 = \frac{\lambda}{2} - \frac{\mu}{2\lambda}$$

as $z \to -1$, the proof is complete.

Corollary 2.2. If $f(z) \in M(p, \lambda, \mu)$ with $0 < \lambda \le 2$ and $2\lambda(\lambda - 1) \le \mu < \lambda^2$, then

$$\left| \arg \left(-\frac{zf'(z)}{f(z)} \right) \right| < \arctan \left(\frac{\lambda}{\sqrt{\lambda^2 - \mu}} \right) \quad (z \in E).$$
 (2.5)

The bound in (2.5) is sharp with the extremal function $f_0(z)$ given by (2.4).

Proof. Let h(z) be given by (2.2). Then h(E) = D and a straightforward calculation yields

$$\min\{\theta : |\arg h(z)| < \theta \ (z \in E)\} = \arctan\left(\frac{\lambda}{\sqrt{\lambda^2 - \mu}}\right)$$

for $0 < \lambda \le 2$ and $2\lambda(\lambda - 1) \le \mu < \lambda^2$. Therefore the corollary follows immediately from Theorem 2.1.

Theorem 2.2. Let $f(z) \in M(p, \lambda, \mu)$ and h(z) be defined by (2.2). Then

$$\exp\left(-p\int_0^1 \frac{h(\rho)-1}{\rho}d\rho\right) < |z^p f(z)| < \exp\left(-p\int_0^1 \frac{h(-\rho)-1}{\rho}d\rho\right) \tag{2.6}$$

for $z \in E$. The bounds in (2.6) are sharp with the extremal function $f_0(z)$ given by (2.4).

Proof. Since the analytic function h(z) - 1 is univalent and starlike with respect to the origin, it follows from Theorem 2.1 and Lemma 1.1 that

$$-\int_0^z \left(\frac{f'(t)}{f(t)} + \frac{p}{t}\right) dt \prec p \int_0^z \frac{h(t) - 1}{t} dt,$$

that is,

$$\log(z^p f(z)) \prec -p \int_0^1 \frac{h(\rho z) - 1}{\rho} d\rho. \tag{2.7}$$

Noting that the univalent function h(z) maps the disk $|z| < \rho(0 < \rho \le 1)$ onto a region which is convex and symmetric with respect to the real axis, we have

$$\int_0^1 \frac{h(-\rho) - 1}{\rho} d\rho < \operatorname{Re}\left(\int_0^1 \frac{h(\rho z) - 1}{\rho} d\rho\right) < \int_0^1 \frac{h(\rho) - 1}{\rho} d\rho \quad (z \in E).$$

Consequently, the subordination (2.7) leads to

$$-p \int_0^1 \frac{h(\rho) - 1}{\rho} d\rho < \log|z^p f(z)| < -p \int_0^1 \frac{h(-\rho) - 1}{\rho} d\rho \quad (z \in E),$$

which implies (2.6). Sharpness can be verified easily.

Theorem 2.3. Let f(z) given by (1.2) be in the class $M(p, \lambda, \mu)$. Then

$$|a_{1-p}| \le \frac{8p\lambda(1+\beta)}{\pi^2} \left| 1 + \sum_{n=1}^{\infty} \frac{\beta^n}{2n+1} \right|,$$
 (2.8)

where β is given by (2.2). The result is sharp.

Proof. By using the expansion

$$\left(\log \frac{1+\sqrt{\zeta}}{1-\sqrt{\zeta}}\right)^2 = 4\zeta \left(\sum_{n=1}^{\infty} \frac{\zeta^{n-1}}{2n-1}\right)^2 = 4\sum_{n=1}^{\infty} \left(\sum_{m=1}^{n} \frac{1}{2m-1}\right) \frac{\zeta^n}{n} \quad (|\zeta| < 1),$$

it follows from (2.2) in Theorem 2.1 that

$$h(z) = h(0) + h'(0)z + \cdots$$

$$= 1 + \frac{8\lambda(1 - \beta^2)}{\pi^2} \left(1 + \sum_{n=1}^{\infty} \left(\sum_{m=0}^{n} \frac{1}{2m+1} \right) \beta^n \right) z + \cdots$$

$$= 1 + \frac{8\lambda(1+\beta)}{\pi^2} \left(1 + \sum_{n=1}^{\infty} \frac{\beta^n}{2n+1} \right) z + \cdots$$
(2.9)

for $z \in E$. On the other hand, it is easy to see that

$$-\frac{zf'(z)}{pf(z)} = 1 - \frac{a_{1-p}}{p}z + \cdots$$
 (2.10)

for $f(z) = z^{-p} + a_{1-p}z^{1-p} + \dots \in M(p, \lambda, \mu)$.

In view of h(z) is analytic, convex and univalent in E, from (2.9), (2.10), Theorem 2.1 and Lemma 1.2, we conclude that

$$\left| -\frac{a_{1-p}}{p} \right| \le \frac{8\lambda(1+\beta)}{\pi^2} \left| 1 + \sum_{n=1}^{\infty} \frac{\beta^n}{2n+1} \right|.$$

This proves (2.8).

Obviously, the equality in (2.8) is attained for the function $f_0(z)$ given by (2.4). The proof of the theorem is complete.

References

- 1. K. K. Dixit & I. B. Misra: A class of uniformly convex functions of order α with negative and fixed finitely many coefficients. *Indian J. Pure Appl. Math.* **32** (2001), no. 5, 711–716. MR **2002c:**30014
- 2. P. L. Duren: Univalent functions. Springer-Verlag, New York, 1983. MR 85j:30034
- 3. A. W. Goodman: On uniformly convex functions. Ann. Polon. Math. 56 (1991), no. 1, 87–92. MR 93a:30009
- W. Ma & D. Minda: Uniformly convex functions. Ann. Polon. Math. 57 (1992), no. 2, 165–175. MR 93j:30009
- 5. S. Owa: On uniformly convex functions. *Math. Japon.* **48** (1998), no. 3, 377–384. MR **99k:**30024

- 6. F. Ronning: Uniformly convex functions and a corresponding class of starlike functions. *Proc. Amer. Math. Soc.* **118** (1993), no. 1, 189–196. MR **93f**:30017
- H. M. Srivastava & A. K. Mishra: Applications of fractional calculus to parabolic starlike and uniformly convex functions. *Comput. Math. Appl.* 39 (2000), no. 3–4, 57– 69. MR 2000i:30037
- 8. T. J. Suffridge: Some remarks on convex maps of the unit disk. *Duke Math. J.* **37** (1970), 775–777. MR **42**#4722
- (N. Xu) Department of Mathematics, Changshu College, Changshu, Jiangsu 215500, P. R. China

Email address: xuneng11@pub.sz.jsinfo.net

(D. Yang) Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, P. R. China