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ASYMPTOTIC BEHAVIORS FOR LINEAR DIFFERENCE
SYSTEMS

Dong MAaN IM AND YOON HoeE GOO

ABSTRACT. We study some stability properties and asymptotic behavior for linear
difference systems by using the results in [W. F. Trench: Linear asymptotic equi-
librium and uniform, exponential, and strict stability of linear difference systems.
Comput. Math. Appl. 36 (1998), no. 10-12, pp. 261-267].

1. INTRODUCTION

We are concerned with the nonlinear difference system
(1.1) Az(n) = f(n,z(n)), z(no) = o

where f : N(ng) x R™ — R™, N(ng) = {no,n0 +1,...,n0 + k,...}, ng is a non-
negative integer, R™ is the m-dimensional Euclidean space. Here A is the forward
difference operator, i. e., Az(n) = z(n + 1) — z(n).

Also, we consider the associated variational systems

(1.2) Av(n) = fz(n,0)v(n)
and
(1.3) Az(n) = fz(n,z(n,no,z0))2(n)

of the system (1.1).

We recall some stability notions in Agarwal [1], Choi & Koo [2] and Choi, Koo
& Song [3].

The system (1.1) is said to be strongly stable if, for each € > 0, there exists a
d = &(e) > 0 such that, for any solution z(n) = z(n,ng,Zo), no < k € N(ng) and
|z(k, no, zo)| < & imply |z(n,ng, z0)| < € for all n € N(nop).
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For the linear difference system
(1.4) Az(n) = A(n)z(n),

where A(n) is an m X m matrix function defined on N(ng), the system (1.4) is said

to be restrictively stable if it is stable and its adjoint system
(1.5) Ay(n) = —AT (n)y(n + 1)

is stable.

Also, (1.4) is reducible (reducible to zero, respectively) if there exists an m x m
matrix L(n) which, together with its inverse L=!(n), is defined and bounded on
N(ngp) such that

L7 (n+ DAM)L(n) + L™ (n + DL(n) - I

is a constant matrix (the zero matrix, respectively) on N(ng), where I is the m x m
identity matrix.

System (1.1) is called an h-system if there is a positive function h : N(ng) — R
and a constant ¢ > 1 and 6 > 0 such that

|z(n,ng, zo)| < |zolh(n), n >mng

if |zo| < 6. If h is bounded, then (1.1) is said to be h-stable.

To study asymptotic behavior for system (1.1), we need the following notions:
system (1.1) has asymptotic equilibrium if there exists a single £ € R™ and 7 > 0
such that any solution z(n,ng, zg) of (1.1) with |zo| < r satisfies

(1.6) z(n,ng, o) — £ +0(1) as n — oo,

and for every £ € R™, there exists a solution of (1.1) such that satisfies (1.6). A
linear homogeneous system is said to have linear asymptotic equilibrium if every
nontrivial solution approaches a nonzero limit as n — oc.

Two difference systems (1.1) and

(1.7) Ay(n) = g(n,y(n))

are said to be asymptotically equivalent if, for every solution z(n) of (1.1), there
exists a solution y(n) of (1.7) such that

(1.8) z{n)=y(n)+o(l) as n— o0

and conversely, for every solution y(n) of (1.7), there exists a solution z(n) of (1.1)
such that the asymptotic relationship (1.8) holds.
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Two m x m invertible matrices A(n) and B(n) are summably similar if there

exists an m x m matrix F(n) satisfying

S IFD)] < o0

l=ng
such that
AS(n)+ S(n+1)B(n) — A(n)S(n) = F(n)
for some invertible bounded matrix S(n) having bounded inverse.

The notion of summable similarity was introduced by Trench [6]. Trench’s defi-
nition is a discrete analog of Conti’s definition of t..-similarity of matrix functions
Conti [4]. Trench [6] also weakened the definition of summable similarity as tqo-
quasisimilarity and obtained results under weakened conditions. The definition of
Neo-similarity in Choi & Koo [2] is quite different from Trench’s definition.

In this paper, we investigate some stability properties for linear difference systems
in Section 2, and study asymptotic behavior for linear difference system and its

perturbed system by means of Trench’s result Trench [6] in Section 3.

2. STABILITY FOR LINEAR SYSTEM

Firstly, we study about h-system for the variational system (1.3). To do this we

consider two linear homogeneous difference systems

(2.1) Az(n) = A(n)z(n), xz(ng) = zp
and
(2.2) Ay(n) = B(n)y(n), y(no) = yo,

where A(n), B(n) are m x m matrices, and I + A(n), I + B(n) are invertible m x m
matrices on N(ng). Their fundamental matrix solutions are denoted by X(n) and
Y (n), respectively. If A(n) and B(n) are summably similar, then we have

(2.3) X1 (n)S(n)Y (n) = X (ng)S(no)Y (no +ZX I+ 1)FOY ()

l=ng
by Lemma 1 in Trench [6]. In view of Medina & Pinto [5], the notion of h-system is

characterized by means of the fundamental matrix solution ® of (2.1):
(2.4) |®(n,n0,0)| < ch(n)h™ (no), 1 2 mng

for some constant ¢ > 1 and positive function h defined on N(ng).
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Theorem 2.1. Suppose that
(i) fz(n,0) and fz(n,z(n,ng, o)) are summably similar forn > ng > 0
(ii) I + fz(n,0) and I + fz(n,ng,xg), n > ng, are all invertible, the latter for all
|zg| sufficiently small,
h
(i) T2 e s | F ()| < 00, h(no) = 1.
Then the system (1.3) is an h-system if (1.2) is an h-system.

Proof. Let ®(n,ng,0) and ®(n,ng,zo) be fundamental matrix solutions of the vari-

ational systems (1.2) and (1.3), respectively. In view of (2.3), we have
n—1
S_l(n)[(I)(n’ 1o, O)S(nO) + Z q)(na [+ 1, O)F(l)q)(l’ no, CE())]

®(n,ng, zg) =
I=ng

From (2.4) and the boundedness of S(n) and S~!(n), we obtain

n—1

|®(n, no, 20)| < c1c2h(n)h ™ (ng) + c1co Z h{n)h

I=ng

Y DIFON(, no, zo)

for some positive constants ¢; and cp. Thus

lq)(n,no,a:o)lh—l(n) < c1c2h‘1(n0)+clcg Z h(’ll:l—)l) |F(l)”h_1(l)||q>(l,no,:L'o)|.
l=ng

Applying the discrete Gronwall inequality (c¢f. Agarwal [1]), we have

|®(n, 10, 20)| < dh(n)h ™ (ng) H (1+ h(l+1 \F ])

_ — R
< dh(n)h~ (o) exp (l_m h(l+ 1) I3 (l)l)
< ch(n)h ™ (no),

where ¢ = dexp (Zﬁno i l+1) |F |) and d = cjcy. It follows that

|@(n, np, 20)| < ch(n)h‘l(no), n > ng > 0.

O

Remark 2.2. The condition (iii) in Theorem 2.1 can be replaced by | F'(n)| € {1(N(no))

—(h(—%; is bounded. But % is not bounded in general even though h(n) is

This completes the proof.
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bounded. For instance,

n—1
h(n) = exp (— Z s)

s=ng

is bounded on N(ng) but we have

lim h{n) = lim expn = oo
n—co h{n+1)  n=co P17 = 00

The basic equivalence property about stability for the linear homogeneous system
(2.1) is
(2.5) | X (n,n0)| <c¢, n € N(ng),
for some constant ¢ > 0, where X (n,ng) is the fundamental matrix solution of (2.1)
(c¢f. Agarwal [1, Theorem 5.5.1]). Also, (2.1) is strongly stable if and only if
(2.6) |X(n,n0)| <c and X n,mp)| <c, n€N(ng)

for some constant ¢ > 0. Using (2.5), we obtain the following theorem which appears
in Agarwal [1, Theorem 5.5.2] without the proof.

Theorem 2.3. (2.1) is restrictively stable if and only if it is strongly stable.

Proof. Note that any solution y(n,ng,yo) of the adjoint system
(2.7) Ay(n) = —AT(n)y(n + 1)
is given by
y(n,m0,30) = (X7 (n,10)] "'y (no).
In fact, we have
Ay(n) = [YT(n +1,n0)"" = YT (n,n0)~'Jy(no)
= [Y " (n+ 1,n0) = Y~} (n, no)]"y(no)
= [-Y " (n+1,n0)A(n)]"y(no)
= —AT(n)YT (n +1)"y(no)
= —AT(n)y(n +1).
Then
AY(n) = —AT(n)Y(n+1), n € N(ng),

where Y'(n) is the fundamental matrix solution of (2.7). Thus the result follows
from (2.5). O
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Note that the transformation z(n) = L(n)y(n), where L(n) is an invertible m xm

matrix, converts (2.1) into
Ay(n) = [L™Y(n + 1)A(n)L(n) + L™ (n + 1)L(n) — I Jy(n).

Thus z(n) = L(n)y(n) transforms (2.1) into a system with constant coefficients (into
the system Ay(n) = 0). The following theorem is the result of Agarwal [1, Theorem
5.5.3].

Theorem 2.4. (2.1) is restrictively stable if and only if it is reducible to zero.

Proof. Suppose that (2.1) is restrictively stable. Then X (n,ng) and X ~1(n,ng) are
bounded on N(ng) by Theorem 2.3. Let z(n) = X(n,ng)y(n). Then we have
Az(n) = A(n)z(n

=X(n+ 1y +1) -yn)]+X(n+ yn) - X(n)y(n)

= X(n +1)Ay(n) + AX(n)y(n)

= X(n+ 1)Ay(n) + A(n)X (n)y(n)

= X(n+1)Ay(n) + A(n)z(n).
This implies that Ay(n) = 0 which means (2.1) is reducible to zero. Conversely,
assume that (2.1) is reducible to zero. Then there exists an invertible m x m matrix
L(n) such that
(2.8) LY n+1DAM)LM) + L Y n+1)L(n) — I =0.
Thus

AL(n) = A()L(n),

i.e., L(n) is the fundamental matrix solution of (2.1). From the boundedness of
L(n) and L™1(n), and (2.5), we conclude that (2.1) is restrictively stable. O

Now, we come to conclude that strong stability for (2.1) preserved under the

notion of summable similarity.

Theorem 2.5. Suppose that A(n) and B(n) are summably similar with F(n) = 0.
Then (2.2) is strongly stable when (2.1) is strongly stable.

Proof. Suppose that (2.1) is strongly stable. Then, from Theorems 2.3 and 2.4, (2.8)
holds. It suffices to show that (2.2) is reducible to zero. Putting T'(n) = S~!(n)L(n),
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we have

T Y n+1)B®)T(n)+T Yn+1)T(n) - I
= L7 (n+1)S(n+1)B(n)S™ (n)L(n) + L™ (n + 1)S(n + 1)S™ (n)L(n) — I
=L n+ D[A() +1 - S(n+1)S7(n)]L(n)

+ LY n+1)Sn+1)S Y n)L(n) - I

by the definition of summable similarity. This implies that (2.2) is reducible to
zZero. ]

3. ASYMPTOTIC BEHAVIOR

Consider the linear difference system
(3.1) Az(n) = A(n)z(n)
and its perturbation
(32) By(n) = Aln)y(n) + g(n),
where g : N(ng) — R™.

Theorem 3.1. If (3.1) has linear asymptotic equilibrium and |g(n)| € I(N(np)),
then (3.2) has also linear asymptotic equilibrium.

Proof. Let y(n,no,yo) be any solution of (3.2). Using the fundamental matrix solu-
tion ®(n,ng) of (3.1), any solution y(n) of (3.2) is given by

n—1

(3.3) y(n) = ®(n,no)yo + (n,m0) > _ ®71(s + 1,m0)g(s).

S=np

Set p(n) = 3.7 &~ 1(s+1,7n0)g(s). Then p(n) is a Cauchy sequence since lg(n)| €

s=ng

[(N(ng)) and @7!(n) is bounded. Thus y(n) converges to a vector £ € R™.
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For the converse, let £ be any vector in R™. There exists a solution y(n,ng, yo)
of (3.2) with the initial point yo = ®1¢ — pso with the property that

n-1
lim y(n) = lim |®(n,no)yo +B(n,n0) Y &' (s+1,m0)g(s)
s=no
= Peo[y0 + Poo]
= Poo[®5 € — Poo + Poo]
=&,
where poo = limy 00 p(n) and P = limp 00 P(n). The proof is complete. a

Theorem 3.2. The system (3.1) and (3.2) are asymptotically equivalent provided
that (3.1) has linear asymptotic equilibrium and |g(n)| € {(N(ng)).

Proof. Let z(n) be any solution of (3.1). Since (3.1) has linear asymptotic equilib-
rium, we have lim, 00 (1) = Too. If we put yo = @ Too — Poo as in Theorem 3.1,

there exists a solution y(n,ng,yo) of (3.2) satisfying

Jim [y(n) - 2(n)] = @oo[y0 + Poo — Too]
=d, [((I);olxoo - poo) + Poo — xoo]
=0.

The converse asymptotic relationship also holds if we put zg = yg + Poo- O

As an illustration of Theorem 3.2, we give the following example.

Ezample 3.3. We show that the following equations are asymptotically equivalent:

(3.4) ‘ Az(n) = a"z(n)
and
(3.5) Ay(n) = a"y(n) + ",

where0<a<land 0<a <1

To show that (3.4) has linear asymptotic equilibrium we use Trench’s result [6,
Theorem 1]: for the fundamental matrix solution ®(n) of (3.4), lim,_,., ®(n) exists
and is invertible.

Note that ®(n) is given by H?:—,io(l +a°). Since 1 +a™ < expa™ for n > ng > 0,
®(n) is bounded, and nondecreasing on N(np). This implies lim, 00 ®(n,1p) = Poo
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exists and it is nonzero. Also, we have lim,_,o, ®~!(n,n9) = ®7!. Thus (3.4) has

linear asymptotic equilibrium. Since any solution y(n,ng,yo) of (3.5) is given by

n—1 n-1 [ n—-1
y(n) = [[ (1 +a)wo+ ) [ II (Ha%ﬂ , m>mng>0,
s=ng s=ng Lr=s+1

and o™ € [(N(ng)), we conclude that (3.5) has linear asymptotic equilibrium by
Theorem 3.1. In view of Theorem 3.2, equation (3.4) and equation (3.5) are asymp-

totically equivalent.

The following theorem states that the variational difference system
(3.6) Av(n) = fz(n,0)v(n)

inherits the property of having asymptotic equilibrium from the original nonlinear

difference system
(3.7) Az(n) = f(n,z(n)).

Theorem 3.4. If (3.7) has asymptotic equilibrium, then (3.6) has also asymptotic

equilibrium.

Proof. We claim that the fundamental matrix solution ®(n,ng,0) = %x(n, ng, 0) of
(3.6) converges as n — 0o.

Let zg € R™ be a vector of length A in the j-th coordinate direction for each
j =1,2,...,m. Then lim,_ z(n,ng, Zo) = Teo exists for fixed h # 0 since (3.7)
has asymptotic equilibrium. Also, since z(n,ng, o) satisfies the Cauchy property

for each j =1,2,...,m, we have
|z(n, ng, zg) — z(m, ng, zo)| < |n|2, n,m > N.
For each j =1,2,...,m, we obtain

0
%x(n’no’o) - 6w—w$(m,no,0)

w(nanOaIO) _x(nan()ao) : x(manOaxO) _ x(m,no,O)
— lim
h—0 h h—0 h

SC(’I’L, o, .’L'O) - m(m, Ny, :L'O)
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forn,m > N.

It follows that lim,_,co ®(n,ng,0) = P, exists.

Now, to show that the limit @, is invertible, we consider linearly independent
vectors Zg; € R™ in the j-th coordinate direction for each j = 1,2,...,m. Then, for
the solutions x;(n, ng, zo;) of (3.7),

lim :vj(n,no,mgj)=h:i0j, j=1,2,...,m, h;éO.
n—000
Hence we have

lim ®(n,ng,0)

n—0Q
. 0
= lim | —z1(n,n0,%01),- .., =——Zm(N, N0, Tom)
n—0o0 ) O0Tom
. . z1(n,no, To1) — 2(n, no,0) . Zm(n,no, Tom) — z(n, no, 0)
= lim | lim yeeey lim
n—o0 | h—0 h h—0 h
I lim, o0 71 (na no, xOl) . limy o0 Ty (n» no, xOm)
= | lim ,o.., lim
h—0 h h—0 h
= [Zo1, - -, Tom]
= d.
Therefore @, is invertible since £g1, - ,Zom are linearly independent. This com-
pletes the proof. O

The following example shows that the converse of Theorem 3.4 need not be true.

Ezample 3.5. Consider the nonlinear difference equation
(3.8) Az(n) = z%(n), z(ng) = zo = 1,
and its variational difference equation

(3.9) Av(n) =0, wv(ng) =v9 #0.

Here, f(n,z(n)) = z?(n) and fy(n,z) = 2z. It is clear that (3.8) has asymptotic
equilibrium since the fundamental solution of (3.9) is ¢(n) = 1 # 0. However, (3.8)
does not have any asymptotic equilibrium since there exists a solution z(n,0,1) of
(3.8) such that z(n,0,1) = z(n) > n for each n > 1.
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