# SOME BASIC THEOREMS OF CALCULUS ON THE FIELD OF $p ext{-}\text{ADIC NUMBERS}$

MINGGEN CUI, HUANPING LIU, AND PHIL UNG CHUNG

ABSTRACT. In this paper, we introduce the concept of derivative of the function  $f: \mathbb{Q}_p \to \mathbb{R}$  where  $\mathbb{Q}_p$  is the field of the p-adic numbers and  $\mathbb{R}$  is the set of real numbers. And some basic theorems on derivatives are given.

### 1. Introduction

The field  $\mathbb{Q}_p$  of the *p*-adic numbers is defined as the completion of the field  $\mathbb{Q}$  of rational numbers with respect to the *p*-adic metric induced by the *p*-adic norm  $|\cdot|_p$  (see Vladimirov, Volovich & Zelenov [1]). A *p*-adic number  $x \neq 0$  is uniquely represented in the canonical form

$$x = p^{-r} \sum_{k=0}^{\infty} x_k p^k, \quad |x|_p = p^r$$
 (1.1)

where p is prime and  $r \in \mathbb{Z}$  ( $\mathbb{Z}$  is the integer set),  $0 \le x_k \le p-1$ ,  $x_0 \ne 0$ . For x,  $y \in \mathbb{Q}_p$ , we define x < y if  $|x|_p \le |y|_p$  and there exists an integer j such that

$$x_0 = y_0, \ldots, x_{i-1} = y_{i-1}, x_i < y_i$$

from viewpoint of (1.1). By the *interval* [a, b], we mean the set defined by  $\{x \in \mathbb{Q}_p \mid a \leq x \leq b\}$ .

It is known that if  $x_R = p^r \sum_{k=0}^n x_k p^{-k} \in \mathbb{R}^+ \cup \{0\}$  and

$$x_0 \neq 0$$
,  $0 \leq x_k \leq p - 1$ , for  $k = 1, 2, \dots$ ,

then there is another expression;

$$x_R = p^r \left( \sum_{k=0}^{n-1} x_k p^{-k} + (x_n - 1)p^{-n} + (p-1) \sum_{k=n+1}^{\infty} p^{-k} \right).$$
 (1.2)

Received by the editors May 24, 2004 and, in revised form, April 7, 2005.

2000 Mathematics Subject Classification. 11S80.

Key words and phrases. field of p-adic numbers, derivative, derivative rules.

Let  $M_R$  denote all such expressions.

As introduced in Kozyrev [2], we let  $\bar{\rho}: \mathbb{Q}_p \to \mathbb{R}$  be the map defined as follows. For  $x = p^{-r} \sum_{k=0}^{\infty} x_k p^k$  in  $\mathbb{Q}_p$  where  $x_0 \neq 0, \ 0 \leq x_k \leq p-1$  we define

$$\bar{\rho} = p^r \sum_{k=0}^{\infty} x_p^{-k-1} \tag{1.3}$$

and let

$$M_p = \bar{\rho}^{-1} M_R. \tag{1.4}$$

Now define

$$\rho: \mathbb{Q}_p/M_p \to \mathbb{R}^+ \cup \{0\} \tag{1.5}$$

by just passing  $\bar{\rho}$  to the quotient  $\mathbb{Q}_p/M_p$ .

We will denote the real numbers by putting a subscript  $\mathbb{R}$  and the p-adic numbers by putting the subscript p, for example,  $x_R$ ,  $a_R$ ,  $b_R$  will be the real numbers and  $x_p$ ,  $a_p$ ,  $b_p$  will be the p-adic numbers.

In Cui & Zhang [3], a measure is constructed using the mapping  $\rho$  from  $\mathbb{Q}_p/M_p$  into  $\mathbb{R}^+ \cup \{0\}$  and Lebesgue measure on  $R^+ \cup \{0\}$ . Let  $\Sigma$  be the set of all compact subsets of  $\mathbb{Q}_p$  and S be the  $\sigma$ -ring generated by  $\Sigma$ .

**Definition 1.1** (Cui & Zhang [3]). Let  $E \in S$ , and put  $E_P = E \setminus M_p$ , and  $E_R = \rho(E_P)$ . If  $E_R$  is a measurable set on  $R^+ \cup \{0\}$ , the we call E a measurable set on  $\mathbb{Q}_p$ , and define a set function  $\mu_p(E)$  on S by

$$\mu_p(E) = \mu(E_R)$$

where  $\mu(E_R)$  is the Lebesgue measure on  $E_R$ . This  $\mu_p(E)$  is a measure on E.

By Definition 1.1 and by definition of  $\rho$  in (1.5), some examples can be given immediately (see Cui & Zhang [3]):

- (1)  $\rho\{B_r(a_i)\}=[a_i,a_i+p)$
- (2)  $\rho\{[a_p, b_p)\} = [a_R, b_R)$
- (3)  $b_R a_R = \mu_p\{[a_p, b_p]\}$
- (4) Let  $a_p, b_p \in \mathbb{Q}_p$ , then  $\mu_p\{[a_p, b_p]\} = (b_R a_R)/p$
- (5) Let  $B_r(0) = \{x_p | |x_p|_p \le p^r, x_p \in \mathbb{Q}_p\}$ , then  $\mu_p\{B_r(0)\} = p^r$
- (6) Let  $S_r(0) = \{x_p | |x_p|_p = p^r, x_p \in \mathbb{Q}_p\}$ , then  $\mu_p\{S_r(0)\} = p^r(1 \frac{1}{p})$
- (7)  $\mu_p\{M_p\} = 0$

According to Definition 1.1 of measure, we can define integration over a measurable set E of  $\mathbb{Q}_p$  by

$$\int_{E} f(x_p) d\mu_p(x_p) \quad \text{or} \quad \int_{E} f(x_p) dx_p$$

For the basic properties see Vladimirov, Volovich & Zelenov [1].

## 2. Lemmas

By Definition (1.1) of measure, we have the following lemmas.

**Lemma 2.1.** Let f be a real-value function defined on  $\mathbb{Q}_p$  denote

$$x_p = \varrho^{-1}(x_R), \ x_R \in \mathbb{R}^+ \cup \{0\}, \ f_R(x_R) = (f \circ \rho^{-1})(x_R)$$

then

$$\int_{a_R}^{b_R} f_R(x_R) dx_R = \int_{[a,b]} f d\mu$$
 (2.1)

where  $a_p = \rho(a_R)$ ,  $b_p = \rho^{-1}(b_R)$ , and  $d\mu$  denotes a measure on  $\mathbb{Q}_p$ , and  $\mu(B_0(p))$ = 1,  $B_r(p) = \{x_p \mid |x_p - a| \leq p^r, x_p \in \mathbb{Q}_p\}$ ,  $r \in \mathbb{Z}$ .

**Lemma 2.2.** Let f be a real-value function on the field  $\mathbb{Q}_p$  of p-adic numbers and  $M_R$  be the set of number given in formula (1.3). Let  $M_p = \rho^{-1}(M_R)$ . For  $x_p \in \mathbb{Q}_p \setminus M_p$ , denote  $x_R = \rho(x_p), f_R = f \circ \rho^{-1}$ . If  $f_R$  is a continuous function on  $\mathbb{R}^+ \cup \{0\}$ , then there exists  $\xi \in [a_p, b_p]$ , such that

$$\int_{[a_p,b_p]} f d\mu_p = f(\xi) \mu_p ([a_p,b_p]).$$

*Proof.* From Lemma 2.1, we have

$$\int_{[a_p,b_p]} f \mathrm{d} \mu = \int_{a_R}^{b_R} f_R(x_R) \mathrm{d} x_R = f_R(\xi_R) (b_R - a_R), = f(\xi_p) \mu_p \big( [a,b] \big),$$

for some  $\xi_R \in [a_R, b_R]$  and  $\rho^{-1}(\xi_R) = \xi_p$ .

# 3. The Derivative of Functions on $\mathbb{Q}_p$

In this section, we discuss the derivatives of real-value functions on  $\mathbb{Q}_p$ .

**Definition 3.1.** Let  $f(x_p)$  be a real-value function on  $\mathbb{Q}_p$ . If there exists  $g \in \mathbb{Q}_p$  such that for  $x_p \in \mathbb{Q}_p$ 

$$f(x_p) = \int_0^{x_p} g(y_p) d\mu_p, \quad x_p \in \mathbb{Q}_p$$
(3.1)

then g(x) is called the *derivative* of f(x) and denote f'(x) = g(x). If f'(x) is continuous then from Lemma 2.2 and formulas (3.1) and (1.4), we have

$$\begin{split} \frac{\left(f\circ\rho^{-1}\right)(x_R+\Delta x_R)-\left(f\circ\rho^{-1}\right)(x_R)}{\Delta x_R} &= \frac{1}{\Delta x_R} \int_{\rho^{-1}(x_R)}^{\rho^{-1}(x_R+\Delta x_R)} g(y_p) \mathrm{d}\mu_p \\ &= \frac{g(\xi_p)\mu\left(\left[\rho^{-1}(x_R),\rho^{-1}(x_R+\Delta x_R)\right]\right)}{\Delta x_R} \\ &= g(\xi_p), \end{split}$$

where  $\xi_p \in [\rho^{-1}(x_R), \rho^{-1}(x_R + \Delta x_R)]$  and, by taking limit of this formula as  $\Delta x_R \to 0$ , we obtain

$$(f_R(x_R))' = (f \circ \rho^{-1})'(x_R) = g(x_p), \quad x_p = \rho^{-1}(x_R).$$
 (3.2)

Remark. Let  $f'(x_p)$  be continuous on  $[a_p, b_p] \subset \mathbb{Q}_p$ . We ave

$$f(b_p) - f(a_p) = \int_a^b f'(x) d\mu_p = f'(\xi) \mu_p([a_p, b_p]), \ \xi \in [a_p, \ b_p].$$
 (3.3)

**Theorem 3.1.** If the derivatives of  $f: \mathbb{Q}_p \to \mathbb{R}$  and  $h: \mathbb{Q}_p \to \mathbb{R}$  exist, then

$$(fh)' = f'h + fh'.$$

*Proof.* Let f' = g, then by

$$f(x_p) = \int_0^{x_p} g(x) d\mu_p = \int_0^{x_R} g_R(x_R) d\mu_p,$$
 (3.4)

we have the equality

$$f'(x_p) = g_R(x_R) = (f')_R(x_R).$$
 (3.5)

Because  $f(x_p) = f_R(x_R)$  and formula (3.4), we have

$$(f_R(x_R))' = g_R(x_R) = (f')_R(x_R).$$
 (3.6)

From (3.5) and (3.6), we have

$$f'(x_p) = (f')_R(x_R) = (f_R(x_R))'.$$
 (3.7)

Using formula (3.7) and the derivative rules of real functions on the real number field, we have

$$\begin{split} \left(f(x_p)h(x_p)\right)' &= \left(f_R(x_R)h_R(x_R)\right)' \\ &= \left(f_R(x_R)\right)'h_R(x_R) + f_R(x_R)\left(h_R(x_R)\right)' \\ &= f'(x_p)h(x_p) + f(x_p)h'(x_p). \end{split}$$

**Theorem 3.2.** If  $(f'_R)(x_R)$  is continuous on  $\mathbb{R}^+ \cup \{0\}$ , then

$$\int_{a_p}^{b_p} f'(x_p) d\mu_p = f(b_p) - f(a_p).$$

*Proof.* For  $x \in \mathbb{Q}_p \setminus M$ , let  $\rho(a) = a_R$ ,  $\rho(b) = b_R$ . From (3.7), we have

$$\int_{a_p}^{b_p} f'(x_p) d\mu_p = \int_{a_R}^{b_R} (f')_R(x_R) dx_R$$

$$= \int_{a_R}^{b_R} (f_R(x_R))' dx_R$$

$$= f_R(b_R) - f_R(a_R)$$

$$= f(b_p) - f(a_p).$$

Now we give the principle of the differentiation of composite functions.

**Theorem 3.3.** Let  $f'(x_p)$  be a real valued continuous function on  $\mathbb{Q}_p \setminus M_p$ , where  $M_p$  is defined in the formula (1.3), and the derivative of function  $g: \mathbb{Q}_p \to \mathbb{Q}_p$  exists on  $\mathbb{Q}_p \setminus M_p$  and  $g'(x) \neq 0$ . Then for  $x_p \in \mathbb{Q}_p \setminus M_p$ 

$$(f(g(x_p)))' = f'(g(x_p))\rho(g'(x_p))$$

*Remark.* The derivative of  $g: \mathbb{Q}_p \longrightarrow \mathbb{Q}_p$  is defined as

$$g'(x_p) = \lim_{|\Delta x|_p \to 0} \frac{\left(g(x_p + \Delta x_p) - g(x_p)\right)}{\Delta x_p}$$

*Proof.* Let  $x \in \mathbb{Q}_p \setminus M_p$ . Denote  $\rho(x) = x_R$ . Without loss of generality, we may assume q(x) > 0. We have

$$f(g(x_p)) = (f \circ \rho^{-1}) ((\rho \circ g)(\rho^{-1}(x_R)))$$

$$= F_R(x_R)$$
(3.8)

where

$$F_{\scriptscriptstyle R}(x_{\scriptscriptstyle R}) = (f \circ \rho^{-1}) \big( \big( \rho \circ g \circ \rho^{-1} \big)(x_{\scriptscriptstyle R}) \big) = (f \circ g) \big( \rho^{-1}(x_{\scriptscriptstyle R}) \big)$$

Because  $f \circ \rho^{-1}$  and  $(\rho \circ g)\rho^{-1}$  are real value functions of real number  $x_R$ , therefore

$$F'_{R}(x_{R}) = (f \circ \rho^{-1})' \Big( (\rho \circ g \circ \rho^{-1})(x_{R}) \Big) (\rho \circ g \circ \rho^{-1})'(x_{R})$$
(3.9)

Now we will calculate the factors  $(f \circ \rho^{-1})' ((\rho \circ g) (\rho^{-1}(x_R)))$  and  $(\rho \circ g \circ \rho^{-1})' (x_R)$ . Since

$$(f \circ \rho^{-1})' ((\rho \circ g \circ \rho^{-1})(x_R)) = \lim_{\Delta x_R \to 0} \frac{(f \circ \rho^{-1}) ((\rho \circ g \circ \rho^{-1})(x_R + \Delta x_R)) - (f \circ \rho^{-1}) ((\rho \circ g \circ \rho^{-1})(x_R))}{(\rho \circ g \circ \rho^{-1})(x_R + \Delta x_R) - (\rho \circ g \circ \rho^{-1})(x_R)}$$
(3.10)

and  $f_R = f \circ \rho^{-1}$ , we have

$$(f\circ \rho^{-1})'\big((\rho\circ g\circ \rho^{-1})(x_{_R})\big)=f_{_R}'\big((\rho\circ g\circ \rho^{-1})(x_{_R})\big)=f'\big(g(x_p)\big)$$

and

$$(\rho \circ g \circ \rho^{-1})'(x_R) = \lim_{\Delta x_R \to 0} \frac{(\rho \circ g \circ \rho^{-1})(x_R + \Delta x_R) - (\rho \circ g \circ \rho^{-1})(x_R)}{\Delta x_R}.$$

Let  $\Delta x_R = p^{\delta_k}, \delta_k \in \mathbb{Z}$  and  $x_R = p^r(x_0 + x_1p + \cdots)$ . Now we let  $\delta_k$  tend to  $-\infty$  (as  $k \to \infty$ ) such that  $\rho^{-1}(x_R + p^{\delta_k}) = \rho^{-1}(x_R) + \rho^{-1}(p^{\delta_k})$ . There exists such  $\delta_k$ , because  $x_R \in M_R$ . It follows that

$$(\rho \circ g \circ \rho^{-1})'(x_R) = \lim_{\Delta x_R \to 0} \frac{(\rho \circ g)(x_P + p^{-\delta_k}) - (\rho \circ g)(x_P)}{p^{\delta_k}}$$
(3.11)

On the other hand, we have

$$(\rho \circ g)(x_p + p^{-\delta_k}) - (\rho \circ g)(x_p) = \mu([0, g(x_p + p^{-\delta_k})]) - \mu([0, g(x_p)])$$
(3.12)

Because  $g'(x_p) > 0$ , the right hand side of (3.12) equals to

$$\mu\Big(\big[g(x), g(x+p^{-\delta_k})\big]\Big) = \mu\Big(\big[0, g(x+p^{-\delta_k}) - g(x)\big]\Big) = \rho\Big(g(x_p + p^{-\delta_k}) - g(x_p)\Big).$$

By the continuity of operator  $\rho$  (see Lemma 2.1, it follows that

$$(\rho \circ g \circ \rho^{-1})'(x_R) = \lim_{k \to -\infty} \rho \left\{ \frac{g(x_p + p^{-\delta_k}) - g(x_p)}{p^{-\delta_k}} \right\} = \rho \left( g'(x_p) \right)$$

From (3.9), (3.10) and (3.13), we obtain

$$F'_{R}(x_{R}) = f'(g(x_{p}))\rho(g'(x_{p}))$$

Finally, by (3.2) and by the equalities  $F_R(x_R) = (f \circ g)(x_p), x_p = \rho^{-1}(x_R)$ , we have

$$\left(f\big(g(x_p)\big)\right)' = F_R'(x_R) = f'\big(g(x_p)\big)\rho\big(g'(x_p)\big). \qquad \Box$$

#### References

- V. S. Vladimirov, I. V. Volovich, & E. I. Zelenov: p-adic analysis and mathematical physics. Series on Soviet and East European Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 1994. MR 95k:11155
- S. V. Kozyrev: Wavelet theory as p-adic spectral analysis. Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 2, 149–158; translation in Izv. Math. 66 (2002), no. 2, 367–376. MR 2003f:42055
- 3. M. Cui & Y. Zhang: The Heisenberg uncertainty relation in harmonic analysis on p-adic numbers field. *Ann. Math. Blaise Pascal* 12 (2005), 181–193. MR 2126447
- (M. Cui) Department of Mathematics, Harbin Institute of Technology, 92 Xidazhijie, Nangang District, Harbin, Helongjiang 150001, China *Email address*: cmgyfs@263.net
- (H. Liu) Department of Information Science, Harbin Normal University, 50 Hexing Road, Nangang District, Harbin, Helongjiang 150080, China
- (P. U. Chung) Department of Mathematics, Kangwon National University, 192-1 Hyo-Ja-2-dong, Chuncheon, Gangwon 200-701, Korea Email address: puchung@kangwon.ac.kr