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HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC
FUNCTIONAL EQUATION IN THE SPACE OF
SCHWARTZ TEMPERED DISTRIBUTIONS

JAEYOUNG CHUNG

ABSTRACT. Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the
stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. T2 (1978),
no. 2, 297-300.] we consider a stability problem of quadratic functional equation in
the spaces of generalized functions such as the Schwartz tempered distributions and
Sato hyperfunctions.

1. INTRODUCTION

We consider the following quadratic functional equation and its staility in the
spaces of distributions and hyperfunctions:

(1.1) flz+y)+ flz—y) -2f(z) - 2f(y) = 0.

The concept of stability for a functional equation arises when the equation (1.1) is
replaced by an inequality which acts as a perturbation of the equation, . e.,

(1.2) If(z+y) + flz—y) - 2/(z) - 2f ()]~ <&

The stability question is that how do the solutions of the inequality (1.2) differ from
those of equations (1.1).

The Hyers-Ulam stability of the quadratic functional equation was first proved
by Cholewa [2] (see also Skof [17]).

Theorem 1.1 (Cholewa [2]). Let f : G — E be a mapping from a group G to a
Banach space E satisfying the inequality

(1.3) |fz+y)+ flz—y) —2f(z) —2f(¥)| <
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for all z, y € G. Then there exists a unique quadratic function q : G — E such that

€
(14) 1/@) - 4@l < §
for all x € Ey. Here, a quadratic mapping q : G — E means that q satisfies the
inequality (1.3) for € = 0.

The above result was later extended by Czerwik [9].

Theorem 1.2 (Czerwik [9]). Let f : G — E be a mapping from a group G to a
Banach space E satisfying the inequality

(1.5) 1f(z +y)+ flz —y) —2f(z) = 2f W < e(ll=l” + llglP), p#2
for all z, y € G. Then there exists a unique quadratic function q: G — E such that
2¢
. - < —= ||
(1.6) If(z) —a(z)|| < % 1] =l?,
for allz € G.

Recently, Theorem 1.1 was generalized to the spaces of Schwartz tempered dis-

tributions in Chung [3] with the reformulation
(1.3) luoA+uoB—2uoP, —2uc P <e.

In this paper, following the same approach as in Chung [4] we generalize the
above Theorem 1.2 for the case that p is an even integer greater than 4 in the spaces
of generalized functions such as the space S’ of Schwartz tempered distributions
which is the dual space of the Schwartz space S of rapidly decreasing functions and
the space F' of Fourier hyperfunctions which is the dual space of the Sato space F
of analytic functions of exponential decay.

Note that the above inequalities (1.5) makes no sense in the spaces of gener-
alized functions. As in Chung [4] making use of the tensor product and pullback
of generalized functions we extend the inequality (1.5) in the spaces of generalized

functions:
(1.5") luoA+uoB —2uo Py —2uoc Py <e(|zf’ + |yP),

where A(z,y) =z +vy, B(z,y) =z —vy, Pi(z,y) =z, P(z,y) =y, z,y € R", and
uo A, uo B, uo P, and uo P, are the pullbacks of v in &’ or F/ by A, B, P| and P,
respectively. Also |- | denotes the Euclidean norm and the inequality ||[v|| < ¥(z,y)
in (1.5') means that |(v,p)| < |[¢@| 1 for all test functions ¢(z,y) defined on R?™.
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As a result, we prove that every solution u in &’ or F’ of the inequality (1.5)
satisfies

[l = g(2)]| < |[?

2 — 4
for a unique quadratic form

q(z) := Z Qjk T Tk

1<j<k<n

2. DISTRIBUTIONS AND HYPERFUNCTIONS

We first introduce briefly some spaces of generalized functions such as the space S’
of tempered distributions and the space F’ of Fourier hyperfunctions which is a natu-
ral generalization of S’. Here we use the multi-index notations for z = (z1,...,z,) €
R, a = (a1,...,a,) € N§ (where Ng = NU {0} is the set of non-negative integers).

ol =1+ +an, a =ai! e, z%=2z0--zyr, 0% =07...05",

where 0; = 0/0x;.

Definition 2.1 (J. Chung, S.-Y. Chung & Kim [5], Hérmander [10], Schwartz [16]).
We denote by S or S(R™) the Schwartz space of all infinitely differentiable functions
@ in R™ such that '

(2.1) ellas = Sup 2¢8Pp(z)| < oo

for all , B € Nj, equipped with the topology defined by the seminorms ||-||,5. The
elements of § are called rapidly decreasing functions and the elements of the dual
space S’ are called tempered distributions.
As a matter of fact, it is known in [5] that (2.1) is equivalent to
(2.7) sup |z%p(z)] < oo, sup |€7@(€)] < oo
z€R™ £eRn
for all «, 8 € Nj.

Imposing growth conditions on || - ||o3 in (2.1) Sato and Kawai introduced the
space F of test functions for the Fourier hyperfunctions as follows:

Definition 2.2 (Chung, Chung & Kim [6], Hormander {10], Schwartz [16]). We
denote by F or F(R™) the Sato space of all infinitely differentiable functions ¢ in
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R™ such that

2288 p(z
(2.2) lollas = sup 20 £l

o AIBIEl g1~

for some positive constants A, B.
We say that ¢; — 0 as j — oo if ||@;|la,B — 0 as j — oo for some A, B > 0, and
denote by F' the strong dual of F and call its elements Fourier hyperfunctions.

It is known in Chung, Chung & Kim [6] that the inequality (2.2) is equivalent to
(2.2) sup |p(z)|expklz| < co, sup |p(£)|exphlE] < oo
z€eR™ RN

for some A, k > 0. It is easy to see the following topological inclusions:
FoS, SoF.
From now on a test function means an element in the Schwartz space S or the

Sato space F and a generalized function means a tempered distribution or a Fourier

hyperfunction.

3. MAIN THEOREMS

Let Ey(z) = (4mt)~™2 exp(—|z|?/4t), t > 0, be the n-dimensional heat kernel. It
is easy to see that the semigroup property of the heat kernel

(3.1) (Bt * Es)(2) = Ers(z)

holds for convolution. This semigroup property will be very useful later. Let u € S'.

Then its Gauss transform
i(e,t) = (uy, By(e 1)), c€R", t>0

is well defined and is a smooth function in R™ x (0, 00) since E;(-) belongs to the
Schwartz space S. Furthermore #%(z,t) — uast — 0% in &', that is, for every ¢ € S,

vy = 1li u(z,t dz.
() = lim, [ (o, (o) do
Throughout this paper we denote by Hj, the heat polynomial of degree 2y with

|y| > 2, which is given by

\ tled p2y—2a
(3.2) Hao(w,) = [+ BUO)@) = @)} 3 s

0<a<y
We first consider the Hyers-Ulam-Rassias stability of quadratic-additive type func-

tional equation.
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Lemma 3.1. Let f: R™ x (0,00) — C satisfy the inequality

(3.3) fz+y,t+5)+ flz—y t+s)—2f(z,t) — 2f(y,s)| < B(z,y,t,5).
where

®(z,y,t,s) = e(Hoy(z,t) + Hoy(y, 9)).
Then there exists a unique function Q(z,t) satisfying the quadratic-additive func-

tional equation

(3.4) Qz+y,t+s)+Q(x—y,t+s)—2Q(z,t) —2Q(y,s) =0
such that
(3'5) | f(z,t) - Q(iﬂ,t)H < 2 Z Qo t|a[x27—2a,

0<a<y

for allz € R™, t > 0, where
aa = (27)! 2°lat (27 = 2a)! (27 — 2271 o < |y
ay = (27)! Y@M — 2)7t 4 (2 gy,
Proof. Let F(z,t) = f(z,t) — f(0,t). Then we get the inequality
(3.6) |F(x+y,t+s)+ F(x—y,t+s)—2F(z,t) — 2F(y, s)|
< O(z,y,t,s) + 2(0,0,t, )
Replacing both z and y by z/2, t and s by t/2 in (3.6) we have

‘F(m,t) _ 4F(g, %) <2 [sz(g, %) + H27<0, %)] .

Making use of the induction argument and triangle inequality we have
n
r _ _ z t t
(37) 'F(I,t) - 4nF<2_na2 nt)' S 2¢ Z4k 1 |:H2’y(5fc'a 2_1") + H2'y (Oa 2_k):|
k=1

<2 Z bat!l 22
0<a<y

for all z € R™, ¢t > 0, where
_ { (27)! 2°al (27 — 20)! (2127 — 22271, ] < 4]
) 2(2y) 2l9l[al (2 — 2a)! (212 — 2lel+2y=1 g =
Replacing :i, t by /2™, t/2™, respectively in (3.7) and multiplying 4™ in the result
it follows easily from the fact |y| > 2 that

gm(x,t) == 4mF(21m, 2—tm-)
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is a Cauchy sequence which converges locally uniformly. Now let
g(z,t) = n%{_rgloo gm(z,t).

Then g(z,t) is the unique mapping in R™ x (0, 00) satisfying

(3.8) |F(z,t) - g(z,t)| <2 Y b t!¥z?172,
0<a<sy
(3.9) gz +y,t+s)+g(x—y,t+s)—29(z,t) —2¢9(y,s) =0

for all z,y € R", t,s > 0. Replacing z, y, t, s by /2™, y/2™, t/2™ s/2™ in
(3.6), respectively, multiplying 4™ and letting m — oo, the inequality (3.9) follows
immediately from the fact |y| > 2.

On the other hand, putting z = y = 0 in (3.3) and dividing the result by 2 we

have
(3.10) £(0,8+5) = £(0,8) = £(0,5)] < 58(0,0,1,5).
Replacing ¢, s by ¢/2 in (3.10) we have
7(0,2) — 2f(0,2/2)] < eH2,(0,t/2).
By the induction argument we can easily verify that

h(t) := lim 2™f(0, t/2™)

is the unique function satisfying
(3.11) h(t + s) = h(t) + h(s),
(3.12) |£(0,8) = h(t)| < e(@7)! [y! (2 - 2)) ¢

for all £,s > 0.

Now let Q(z,t) = g(z,t) + h(t). Then Q(z,t) is the function satisfying (3.4) and
(3.5).

Finally we prove the uniqueness of Q. Let Qo(z,t) = Q(z,t) — Q(0,t). Then
Qo(z,t) also satisfies the quadratic-additive functional equation

(3.13) Qo(z +y,t+ )+ Qolz —y,t +5) — 2Qo(z, t) — 2Qo(y, s) = 0.
Putting y = 0 in (2.19) we have

Qo(z,t +s) = Qo(z,t)
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for all z € R", t,s > 0. Thus Qo(z,t) is independent of ¢ > 0 and we may write
Go(z,t) := Qo(z). Since Qg satisfies the quadratic functional equation
Qo(z +y) + Qo(z — y) — 2Qo(z) — 2Qo(y) = 0,
and that
(3.14) Q(rz,r%t) = Qo(rz) + Q(0,7%t) = r’Q(z, t).

for all rational numbers 7.
Now suppose that Q*(z,t) also satisfies (3.4) and (3.5). Then we have

Q(z,t) — Q*(z, )] = r2|Q(rz, r%t) — Q" (rz, )]

< e ril-2 g gt p2r—2e
0<a<y

Letting 7 — 0 we have Q = Q*. This completes the proof. O

Now we state and prove the main results of this paper.

Theorem 3.2. Let u € 8’ satisfy the inequality
(3.15) luo A+uoB—2uo P —2uo Py <e(z? 4 y?).

for some v € Ng, |v| > 2.
Then there exists a unique quadratic function

q(z) == Z ik TjTk

1<j<k<n
such that

(3.16) e — g@)] < 2=

Il < —= %
4l — 4

Proof. Convolving in each side of (3.15) the tensor product E(z)E;(y) of n-dimen-
sional heat kernels we have in view of the semigroup property (3.1).

(wo ) x (B(OE()l(z, ) = (e, [ Bilz €+ mEuly - ) an)
= (ug, (Be» Ba)(z +y — )
=u(z+yt+s).

Similarly we have

[(uo B) * (E¢(§) Es(m)l(z, y) = 4(z — y,t + s),
[(wo P) * (Ee(§)Es(m)](z, y) = u(z, t),
[(uo Pp) * (E4x(§) Es()](z, y) = i(y, s),
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where 4(z,t) is the Gauss transform of w.
Thus the inequality (3.15) is converted to the stability problem of quadratic-
additive type functional equation
iz +y,t +5) + Uz~ y,t +5) — 2u(z, 1) ~ 2a(y, s)| < B(z,9,t,9)
for z, y € R™, t,s > 0, where
(D(il?, Y, t) S) = E(H2’y(xa t) + H?’y(ya S))

By Lemma 3.1, there exists a unique function Q(z,t) satisfying the quadratic-
additive functional equation (3.4) such that

(3.17) la(z,t) — Q(z,t)|| < 2 Z aq tlz22,

0<asy
Since the Gauss transform @ a sooth function, Q(z, t) is at least a continuous function
as we see in the proof of Lemma 3.1. Thus the solution Q(z,t) has the form Chung
& Lee [7].

Q(z,t) = Z a;j T; zj + bt.

1<i<j<n

Letting t — 07 in (3.17) we get (3.16). This completes the proof. (]

As a direct consequence of the above result we obtain the Hyers-Ulam-Rassias

stability of quadratic functional equation.

Theorem 3.3. Let u € S’ or F' satisfy the inequality
(3.18) luoA+uoB—2uoP, —2uo Py <e(jzP + |yP).

for some even integer p > 4.

Then there exists a unique quadratic function

q(x) = Z Qg T5Tg

1<j<k<n

such that

(3.19) lu — g(=)]| <

P

Proof. Note that we can write for even integer p,

|x|p= Z (p/2)' $27.

!
|7l=p/2 i
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Thus convolving in each side of (3.18) the tensor product Ey(z)Es(y) of n-dimension-
al heat kernels as a function of z, y the inequality (3.18) is converted to the following
inequality as in the proof of Theorem 3.2

li(z +y,t + s) + @z — y,t + 5) — 2a(z, t) — 2a(y, 9)||

<e 3 Y, (0,0) + Haly,s)
Ivl=p/2 T

for all z,y € R™, t,s > 0.

Now making use of the same approach as in the proof of above Theorem 3.2 we

have
(p/2)! 2e 2
= a(@)i < m;m y \a—4"
2e
_ p
== 4|:1c| .
This completes the proof. : 0O

As a direct consequence of the above result we obtain the following.

Corollary 3.4 (Chung & Lee [7]). Every solution u € S8’ or F' of the quadratic
functional equation

uoA+uoB—~-2uoP; —2uoPy, =0

has the form

q(z) := Z Qjk T;Th.

1<5<k<n
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