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MATHEMATICAL ANALYSIS FOR A DYNAMIC CIPHER

YOON-TAE JUNG, EUN-HEE CHOI, AND KWANG-CHEOL Rim

ABSTRACT. We present a new block cipher called DyC. It consists of four sets (pro-
cedures) having the different 22, 22, 24, and 2% one-to-one correspondence functions
as the elements. The round key is used to determine exactly one composite function
from the possible 21® composite functions. DyC supports 8 X n bit key size, 16 x m
bit block length, and n rounds. We have confirmed that DyC offers security against
other well-known advanced cryptanalytic attacks including the slide attacks and in-
terpolation attacks. In this paper, we show several properties of the key schedule of
DyC by mathematical analysis.

1. INTRODUCTION

At first, the design of DyC began with a consideration of the concept “key depen-
dent”. The term “key dependent” is not defined concretely but used in the several
cryptographic primitives(cf. Biham [1], Biryukov & Wagner [2], Jung, Kang, Park
& Cho [4]). The key schedule of DyC receives 8 x n bit key as an input and outputs
n-round keys. The key schedule uses 16 key bit for generating the round key. For
each 16-bit round key, encryption of DyC consists of four sets having the different
22,22 24 and 2% one-to-one correspondence functions as the elements. The round
key of DyC is used to determine exactly one composite function out of the possible
216 composite functions. DyC supports 8 x m-bit block length, 8 x n-bit key size,
and n rounds for positive integers m and n. The security of DyC basically depends
on the facts that (1) the key spaces to determine four kinds of one-to-one correspon-
dence functions of four sets are 22,22 2%, and 2%; (2) the key space to determine
a composite function corresponding to a round is approximately 21¢; (3) the key
space of DyC is increased by the number of rounds inductively. Block cipher based
on the concept “key dependent” may reveal the weakness for Meet-in-the-Middle
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attack. The key schedule of DyC offers security against Meet-in-the-Middle attack.
The attacks, successful in most Feistel ciphers, are not the case to DyC. We have
confirmed that DyC has difficulty finding differential and linear characteristics(cf.
Biryukov & Wagner [2], Jung, Kang, Park & Cho [4]). Encryption of DyC consists
of only logical and bit operations that can be efficiently implemented in software,
including the 8-bit processors used in low-end smart cards, 32-processors widely
used in PCs, and 64-bit processors. The key schedule of DyC has remarkably short
setup time with quite small memory requirements. In this paper, we present the
mathematical analysis for one-to-one correspondence functions of DyC, and show
several properties of the key schedule of DyC through mathematical analysis.

2. STRUCTURE OF DYC

We begin this section with a definition taking shape the framework for the block
ciphers using the concept “key dependent” (c¢f. Jung, Kang, Park & Cho [4]). Here
we assume that the key size is 8 x n bit and the plaintext size is 16 x m bit for

positive integers m and n.

Definition 1. Dynamic cipher that encrypts a plaintext in the following way:

(1) The encryption consists of the different 216" one-to-one correspondence func-
tions, each one-to-one correspondence function describes a method to map a
given block to another block.

(2) The key schedule uses 16 key bit to generate the n round key, and each round
key determines exactly one one-to-one correspondence function on the set of

plaintexts.

Definition 2. Let k1ks - - - kgx; be a given key for 1 < j <[. Then the key schedule
of Dynamic cipher generates the 16-bit jth round key
kg (j—1)+1K8x (j-1)+2 * - Kex (j—1)+8K8x (n—j)+1K8x (n—5)+2  * * K8x (n—j)+8

Also, Dynamic cipher supports various block lengths because the mapping method
can be applied to various block lengths. As an example, bitwise XOR between left
half and right half of the block can be applied to the blocks with even length.

2.1. Key schedule

The key schedule generates n round keys, and each round key uses 16 key bit
derived from 8 x n bit key. Let kjkg - - - kgxn be the key. The key schedule of DyC
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outputs the ¢-th round key which consists of 10 subkeys
{fih <i<n1<j<10}
where

It = (kgx(i—1)+1  ksx(i-1)+2),

)
I3 = (ksx(i—1)+3  Kex(i—1)+4)s
Iy = (ksx(i-1)+5  Ksx(i-1)+6)»
Ii = (kgx-1)47  Kax(i-1)+8)>
I = (ksx(n-i)+1  kax(n—i)+2)»
I§ = (ksx(ni)+3);
Iy = (ksx(ni)+4  Ksx(n—i)+5)>
I§ = (ksx (n—i)+6),
I§ = (Kgx (n—i)+7);

Iip = (kgx(n—i)+8)-

Ezample 2.1. If the given key is 01100111, then the key schedule generates 16-bit of
the first round key 0110011101100111, and the first round key consists of 10 subkeys
Il = (01), 1} = (10),--- , I}, = (1). If the given key is 011001110000111100110011,
the the key schedule generates three 16-bit round keys, i.e., 0110011100110011,
0000111100001111, 0011001101100111. Hence IZ = (11).

2.2. Encryption and decryption

In this subsection, we consider 16 x m bit plaintext B. We denote B by
(Bo||B1)|Bz2]|Bs3), where B; is the 2 x m-bit subblock for 7 = 0,1,2,3 and || means
the catenation of subblocks B;. The ¢-th round encryption of DyC consists of four
sets (procedures) denoted by E*, F*,G* and H*®. The functions of E* are determined
according to the first subkey I = (kgx(i-1)+1 Ksx(i-1)+2) of i-th round key. We
denote them by ey, €f;, €1, €31- For the plaintext B = (By||B1||Bz||Bs), €} com-
plements all of the bits of (2s +t)-th subblock and the other bits remain. Therefore,
E' has four one-to-one correspondence functions, I specifies exactly one subblock,
and each element of E* complements 4 x m bits out of 16 x m bits.

Ezample 2.2. Let B = 0000000000000000 be the 16 bit plaintext and let It = (10).
Then €iy(B) = 0000000011110000.
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The functions of F* are determined according to the second subkey

I} = (ksx(i-1)+3Kax(i-1)+4)

of i-th round key. We denote them by fio, fi,, fig, fi1. For B = (Bo||Bi1||B2||Bs)
the functions of F* swaps the 4 x m pairs of bits as follows: If I! = (pg) and
Ii = (st), then the first bit of (2p + ¢)-th subblock of B is exchanged with the
first bit of (2s + t)-th subblock of B, the second bit of (2p + ¢)-th subblock of B
is exchanged with the second bit of (2s + ¢ + 1 mod 4)-th subblock of B, 3rd bit
of (2p + q)-th subblock of B is exchanged with 3rd bit of (25 + ¢ + 2 mod 4)-th
subblock of B, - -+, and (4m)-th bit of (2p + ¢)-th subblock of B is exchanged with
(4m)-th bit of (2s +t + 4m — 1 mod 4)-th subblock of B.

Ezample 2.3. Let B = 0000111101110011, I} = (00), and I} = (00). Then, we can
obtain

fi,(0000111101110011) = 0111101101010010.

If we apply the function 660 and féo to B, then we have

féo © €bo(B) = 1111111101110011.

The elements of F* swaps 4 X m pairs of bits for spreading complemented bits
generated by the elements of E* so that every subblock has approximately (|B|/4)

complemented bits.

Definition 3. For a bitstring b1bs - - - by, it is S-XOR (Sequential eXclusive-OR) that
does XOR generating a bitstring bjb, - - - b} in the following way: by = b; @ by, b, =
bi®b,_, for 2<1i <! and by = by @ b;. S-XNOR uses XNOR instead of XOR in
S-XOR, where XNOR means the negation of XOR.

The functions of G* are determined according to the 3rd subkey I} = (kg (i-1)+5
ksx(i~1)+6) and the 4th subkey Ij = (kgx(i—1)+7 ksx(i—1)+8) of i-th round key. We
denote them by o0, 9boo1>** » Fi111-

Each function gy, of G* performs S-XOR or S-XNOR beginning with (2p + q)-
th subblock and determines which operator in S-XOR. and S-XNOR to apply and
which direction of the operator to choose. We apply the function g;qst as follows :
If (st) = (00), then g, ., apply S-XOR to the first bit of (2p + ¢)-th subblock in the
right direction. If (st) = (01), then g3, apply S-XOR to the last bit of (2p + ¢)-th
subblock in the left direction. If (st) = (10), then gp.,, apply S-XNOR to the first
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bit of (2p + ¢)-th subblock in the right direction. If (st) = (11), then gzi,qst apply
S-XNOR to the last bit of (2p + g)-th subblock in the left direction.

Example 2.4. Let B = 1000110011101111. Then, 96000(3) = 1111011101001010 and
¢i011(B) = 1101000100001111.

The functions of H* are determined according to the subkeys I¢, I§, It, If, I§ and
Ii. The subkeys If, I* andI} determine the number of rotations. And the subkeys
I{, It and I%, determine the direction of rotations and the bit- units of rotations. In
fact, the functions of H* are a kind of shifts. They are three kinds of shifts. We

classify them as follows:

(1) If It = (pg) and I} = (0) , then we shift (and rotate) all bits by (2p+ g+ 1)-bits
in B in the right direction.

If It = (pg) and I} = (1), then we shift all bits by 2p + ¢ + 1-bits in B in the
left direction.
We denote these kinds of shifts by “6007 e ,u;qt, . :“?111'

(2) If It = (pq) and I§ = (0) , then we shift all bits by (2p + g + 1)-bits within only
(By||B1) in the right direction and shift all bits by (2p + ¢ + 1)-bits within only
(By||Bs3) in the right direction. If It = (pg) and I} = (1), then we shift all bits
by 2p + q + 1- bits within only (By||B1) in the left direction and shift all bits
2p + q + 1- bits within only (Bs||B3) in the left direction.

We denote these kinds of shifts by 11600, e ,vzi,qt, ‘e ,vin.

(3) If I = (p) and I}y = (0) , then we shift all bits by p + 1-bits within only each
B; for : = 0,1,2,3 in the right direction.

If I§ = (p) and It; = (1), then we shift all bits by p + 1- bits within only each
B; for i = 0,1,2,3 in the left direction. We denote these kinds of shifts by
Wiy, Wi ;

7 R 7
pg " Wit

Hence the functions of H* performs the rotation(or shift) in three methods.

Example 2.5. Let B = 1000110011101111. If the subkey (Is||Is||17||1sl|1o|| 10) is
10101110, then we can consider functions uly,,vh;; and wi,. First, since I} =
(10) and If = (1), we shift all bits in B by 3 bits in the left direction, so we get
0110011101111100. And, the second, since I? = (01) and I} = (1), we shift all bits
only within (Bj||B}) by 2 bits in the left direction, and shift all bits only within
(B4%||Bj) by 2 bits in the left direction, where each B; is calculated in the first step.
So we get 1001110111110001. Finally, third, since I§ = (1) and I%; = (0), we shift
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all bits by 2 bits only within each B} for i = 0,1,2,3 in the right direction, where
each B} is calculated in the second step. Therefore, we get 0110011111110100. Thus
wiy o vhy; 0 ulp (B) = 0110011111110100.

The following figure shows summarization of i-th round of Dyec.

B' = Byl|B:1||Ba||Bs

DyC performs complement-swap-substitution-shift n times. Therefore, DyC is
SP, iterated, and Dynamic cipher.
Following property is for the scalability of DyC.

Property 2.1. DyC satisfies the followings:

(1) DyC supports 16 x m bit block length and 8 x n bit key size;
(2) For a given 8 x n bit key, the number of rounds is fired as n.

Property 2.2 is for the property of one-to-one correspondence functions of DyC.

Property 2.2. For the one-to-one correspondence functions, DyC satisfies the fol-

lowings:

(1) Every function of DyC, specified by a round key, is one-to-one corresponding
Sfunction.

(2) Any two one-to-one correspondence functions in each set are different one-to-one

corresponding functions.

From the property 2.2, each round of DyC can be considered as the composite
function of four kinds of one-to-one correspondence functions specified by a round
key. For the ith round block B?, the (i+1)th round block B*t! is an image of
the composite function, and B? is a preimage of B! of the composite function.
Therefore, we do not present decryption of DyC.
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The design criteria of the encryption/decryption of DyC are the followings:

(1) The executing time should be short.

(2) The memory requirement should be quite small.
(3) Every one-to-one function should be simple.

(4)

4) Plaintext length should be scalable.

3. MATHEMATICAL ANALYSIS FOR DYC

Theorem 3.1. The functions of E*, F*,G* and H* can be represented by matric
forms.

Proof. Since the functions of E*, F*,G* and H* are all linear functions with some
constant terms, so they can be represented by matrix forms as follows :

where e;, fi, gi, u;, v;, and w; are matrix and A; and C; are vector forms. Since
the given functions are bijective, the determinants of e;, f;, gi, u;, v5, and w; are not
ZEro. O

Theorem 3.2. The orders of the functions e;q and f%, are 2’s.

Proof. Since the function e;,q is the complement on some subblock, the self composite
of the given function is the identity function. And since the function le;q is to
exchange two given elements, the self composite of the given function is also the

identity function. O

Proposition 3.3. If the plaintert length is m = 25-bit for 1 < k < 186, then the
order of the functions gj,s; is m?® — 1, respectively.
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Proof. We checked (g;;qst)“ the following in Remark 3.4 using Matlab program; For
example, if the plaintext length 8-bit, then 93000 is of the form

01111111

e e b e e e
e
b e e e a O
e = e OO
P === O OO
= - OO OQ
= OO0 00O
HOOOoOOoOOoOO

which order is 63, etc. O

Remark 3.4.

(1) We computed the order of Gpqst USing the following program :
function [k,A] = order (n)
E=zeros (n)
for i=1:n;
E(i,j) =1;
end;
A=zeros(n);
for i=1:n;

for j=1:n;
while B(i,j)~ =E(i,j)
B=mod (A*B,2);
k=k+1;
end;
end;

end;
(2) We conjecture that if the plaintext length is (m = 2F)-bits, then the order of
the functions g;',qst is m? — 1 = (2%)2 -~ 1 for all k. We expect that more many

facts will be checked using another mathematical program.

Remark 3.5.

(1) If the palintext X is of the length 8, 16, 32, 64-bit, respectively, then there
is not a plaintext X (# 0) such that g;qst(X ) = g%p.q(X) for (pgst) # (abed),
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p,4,5,t,a,b,¢,d = 0,1. We checked the eigenvalues of g5, 0 (g%.4) " by Matlab
program. For example, if the plaintext length 8-bit, then giygq © (9%peq) " does
not have the eigenvalue 1.

(2) There are some nonzero plaintexts Xi, Xs, X3, X4, X5 such that e;q(Xl) =
ee(X1), frq(X2) = fa(X2), uppr(X3) = ulp(X3), vp(Xa) = vip(X4) and
wh (Xs5) = why(Xs), for (pg) # (st),(pgt) # (abc). Using Matlab program
we checked the eigenvalues of €}, o (ef,)7%, fi, o (f&4)(X2)™!, by o (uly) 7™,

v;f]qt o (vi,.)7!, and w;q o (wi,)™!, all of which have eigenvalue 1’s.

Theorem 3.6. If the plaintext length is 8m-bit, the order of functions u;qt,v;qt,
and wy,, are, respectively,
8m dm 2m
ged{8m,2p + g+ 1}’ ged{d4m,2p +q+ 1}’ and ged{2m,2p+q+1}’

where gcd{a,b} means the greatest common divisor of a and b.

Proof. If the plaintext length is 8m-bit, the associated matrix ugyq is 8m x 8m- matrix
obtained by shifting cbnsecutively the row vectors of 8m x 8m-identity matrix, that
is, the first row of identity matrix is shifted to the second row, ..., the last row of
identity matrix is shifted to the first row. Hence (ufy)®™ = identity matrix. Since

ud o = (uboo)?PHet!, our result holds. For the case u},;, similarly, our result holds.

And the associated matrix 'U(i)oo is of the form <‘61 21) , where A is 4m x 4m - matrix

obtained by shifting consecutively the row vectors of 4m x 4m-identity matrix, that

is, the first row of identity matrix is shifted to the second row, ..., the last row of

}4™ = identity matrix. Since

And the

identity matrix is shifted to the first row. Hence (v,

Vi = (Uboo)PTIL, our result holds. It is similar with the case v},,.

associated matrix w}, is of the form

B 0 0 O
0 B 0 O
0 0 B 0}’
0 0 0 B

where B is 2m X 2m-matrix obtained by shifting consecutively the row vectors of
2m x 2m-identity matrix, that is, the first row of identity matrix is shifted to the
second row, --- , the last row of identity matrix is shifted to the first row. Hence
w?™ = identity matrix. Since wiy = (w§y)P*!, our result holds. It is similar with

the case w? O

pl*
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