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THE ORDER OF CONVERGENCE
IN THE FINITE ELEMENT METHOD

CHANG-GEUN KM

ABSTRACT. We investigate the error estimates of the h and p versions of the finite
element method for an elliptic problems. We present theoretical results showing the
p version gives results which are not worse than those obtained by the h version in
the finite element method.

1. INTRODUCTION

There are several types of partial differential equations, but specially we are
interested in the following model problem:

Lu=—div (aVu) = f inQCR? (1)
u=0 ondQ, (2)

where  is a is a bounded polygonal domain. When we approximate the above so-
lution u(z), there are three ways in the finite element method (FEM). The first one
is h version of the FEM. This is the classical FEM, where piecewise polynomials of
fixed, usually low degree p are used and the mesh size h is reduced for accuracy. The
next one is p version. This is the name given to the FEM where the mesh is fixed (h
constant) and accuracy is achieved by increasing the polynomial degree. The last
one is a combination of the h and p versions. This is considered in Abramowitz
& Stegun [1] where it is demonstrated that particular couplings of refined meshes
and increasing polynomial degree distributions yield arbitrarily high orders of con-
vergence in the energy norm with respect to the number of degrees of freedom. In

this paper, some direct energy norm estimates are obtained. These show that, when
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both the h and p version estimates are expressed in terms of the number of degree
of freedom, the order of convergence for the p version can be no worse than that of

the A version with a quasi-uniform sequence of mesh refinements.

2. PRELIMINARIES

We will consider R? as the two-dimensional Euclidean space and 2 C R? as a
bounded domain with a piecewise smooth boundary 9€2. In particular, we will deal
with polygonal domains. £(f2) shall be the space of all real C* functions on Q with
that allows continuously extension of all derivatives to . All functions in £(Q) that
have compact support in Q form a subspace D(Q) C £(Q). Lz(Q2) = HO(Q) will be
the space of all square-integrable functions on 2.

In addition, for any integer k > 1, the Sobolev spaces H*(Q) (respectively HE((2))
will be the completions of £(Q2) (respectively D(2)) under the norm

lulfo= > [D%l3q (3)
0<lal<k |
for each multi-integer (a;,az2). Here |a| = a; + a2 and
ol
D= (4)

- O0x]* dz5*’
The standard inner product in H*(2) will be denoted by (-, k0. Finally, we intro-
duce the space P,(Q2) ¢ Z(Q) of all algebraic polynomials of degree not higher than

p. Let P,EC] (Q) consists of all functions in H!(€2) which are piecewise polynomials of
degree at most p. Furthermore, let PIE%(Q) = P,Egl(Q) N H ().

Theorem 2.1. Let u € H¥(Q). Then there exists a sequence z, € P,Ec](ﬂ), p =
1,2,...such that for any 0 <1 < k (k,l not necessarily integer),

lu— zple < Cp~*Ijullkq, (5)
where C is independent of uw and p. (C depends on l and k).

Proof. The theorem has been proved in Babuska, Guo & Suri [3] and Babusuka,
Szabo & Katz [?]. 0

Theorem 2.2. Let u € H¥(Q) N H(Q). Then there eTists a sequence z, € Pzgf(])(ﬂ),
p=1,2,... such that for any k > 1 (not necessarily integer) and any € > 0, we have

lu = zpll1,0 < Cp~*Djullrq, (6)
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where C' is independent of p and u (C depends on l and k).

Proof. The theorem has been proved in Babusuka & Dorr [4]. O

3. RATE OF CONVERGENCE OF THE h AND p VERSION

Using Theorem 2.1 and Theorem 2.2, we get the following theorems
Theorem 3.1. Let ug € H*(Q), where k > 1, be the solution of the problem (1)
and (2) and let u, be the finite element approximation. Then
lluo — wplhe < ek, e)p™ * Ve luollkg, Ve >o0. (7)
If the Neumann boundary conditions are under consideration, then € can be taken

to be zero.

Proof. See Babusuka & Dorr [4] and Babusuka, Szabo & Katz [5]. O
Since a polynomial of degree p has degrees of freedom N = (p + 1)(p + 2)/2,
equation (7) can be rewritten in the following form:
lluo — upllng < C(k, &) N~FD/ 24 jyq | . (8)
On the other hand, for the h version case, we have
[[uo — upllr,e < Ch*|luollk,0; (9)

where p = min(k — 1,p) and is the degree of the complete polynomial used in the
elements (see Dorr [6]). Since the number of degrees of freedom N satisfies the
relation N ~ h~2 (9) becomes

luo = unlle < CNT*Z|lugx,0 (10)
The relations (8) and (10) give the results that the p version is not worse than the

h version on a quasi-uniform mesh (as € — 0) if we compare the number of degrees
of freedom that are required to obtain a certain accuracy. Assume

luop — unlli,o < Kp™" for some r > 0. (11)
Theorem 3.2. Let ug € H(2) and suppose that (11) holds. Then

(i) uwp € HMW™5(Q*) where (Q*) is any domain such that O* C K; for some
1=1,2,...,m where K, are the triangles of the triangulation T and

lluol|14r-e.0+ < Cr(llugll1n + K). (12)
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(i) ug € HW/2~¢(K;) for each i =1,2,...,m and

[wolli+r/2-e,; < Callluolle + K)- (13)
Proof. The theorem has been proved in Babusuka, Szabo & Katz [5] and Dorr [6]. O

4. PrACTICAL EXPERIMENTS

Consider the following problem:
u'(z) = —q(z), €N =(-1,1), (14)

where the loading function g(z) and the Dirichlet boundary conditons will be spec-
ified later. The energy inner product is given by

B(u,v) = (u,v)g = v'(z)v'(z)dz. - (1%)

Hence we must find a solution u € H}(f2) such that for all v € H}()

1 1
(u, v)5 = / o ()0 (2)dz = / o(2)v(z)dz. (16)
-1 -1
We choose as basis functions
By(z) = / o)t for i>1, (17)
-1

where ;(t) is the Legendre polynomial of degree i. Observe that ®;(z)(i = 1,2,...)
forms an orthogonal family with respect to the energy inner product, because

1
((I)i,q)j)E‘:/ @;q);dﬂ?:/
-1

1
2
. pipjdr = (2—{:_—1>5ij- (18)

First we consider the convergence when () is not divided; i.e., we use only one

interval.
Clearly, the finite element solution u, satisfies, for i = 1,2,...,p
1
(up, B35 = / o(2)®:da. - (19)
-1
And we can let
11—z l+z

p
up(z) = ——u(~1) + — u(1)+;ai¢>i(x),
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1
[ s = @@, 0605 = (Y atie,0@),

-1 =1

= (ai2i(z), ®i(2)) g = a:(Pi(z), Bi(x)) B = as
Hence we get, for i =1,2,...,p
2i+1 (!

a4 =— / q(z)®;(z)dz. (20)
-1

If we denote the error by ep(z) = u(z) — up(x), then

2
21+ 1

ool = [ at@)w = up)i = [allp =l = | 3 astito)]

i=p+1
Since

| 3w = 3 e leli= 3 als

i=p+1 i=p+1 i=p+1
Consider following problem

N T .
2, q(o) = —<lal2, (21)

where boundary conditions are u(—1) = u(1) = 1.

u(z) = |z

Equation (20) becomes

2i+1 [1 2i4+1 1 A s
0 =2 /_lq(x)@(m)dx_ . /_f?z??"”' ®,(z)dz.

By integration by parts,
P& d ! L rd
- /2@ _ 3/2@. _/ ° 3/2 )
_/_1 dz? |$| Z(m)dm dq;lxl 1('7“‘) 1 . (dmlml ) goz(:c)dw
1
d
= / [a:|3/2d—<pgm(x)da:

3
/ 2 2l oam(z

3 Mt
-2 / |xr%sozm(x>dx.
~1

= Pom |3/2

Hence .
3(dm +1 1
am = (—2—2/ |z|2 pom (z)dz.
0

From Abramowitz & Stegun (1, formula (22.13.8), p. 786],

L _(=1)"T(m - TG + 3)
/0 T pom(x)dz = 2I(-3)I(m+ 3 + 3)

(A>—1).
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Then we obtain
(=1)"T(m - T(3)
20 (—)T(m + )

1
/ (|3 pam(z)dz =
0
Therefore
_ 3(4m+ 1) (-1)™T(})
T T M D -

It follows that for ¢ odd, a; = O(1) as i — co. Hence

ol = 3 atziy=0( T 5)=0()=0(w) @

i=p+1 i=p+

Thus, we obtain the same rate of convergence for the square of the error |lep|% as
obtained for the h version. This illustrates the importance of the statement that in
order to get the full power of the p version, singularities must be located at vertices

of the finite element mesh.
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