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EXISTENCE AND ASYMPTOTICS FOR THE TOPOLOGICAL
CHERN-SIMONS VORTICES OF THE CP(1) MODEL

HEE-SEOK NAM

ABSTRACT. In this paper we study the existence and local asymptotic limit of the
topological Chern-Simons vortices of the CP(1) model in R?. After reducing to
semilinear elliptic partial differential equations, we show the existence of topological
solutions using iteration and variational arguments & prove that there is a sequence
of topological solutions which converges locally uniformly to a constant as the Chern-
Simons coupling constant goes to zero and the convergence is exponentially fast.

1. INTRODUCTION

The classical CP(1) model which is equivalent to the O(3) sigma model is a
basic model in field theory (see Rajaraman [10] and references therein). The model
is useful as a toy model for the instantons in non-abelian Yang-Mills theories, but
it is scale invariant and yield instantons of arbitrary size. This makes the model
unsuitable as a model for real particles and there have been many attempts to break
the scale invariance. Among them, one of the most elegant way is to introduce a
gauge field which incorporates the kinetic term.

While the generalization of O(3) model to O(N) model does not yield instantons
when N > 3, the CP(N) model yield instanton solutions for arbitrarily large V.
For this reason, we consider the 2 + 1 dimensional self-dual Chern-Simons CP(1)
model (¢f. Kimm, K. Lee & T. Lee [8]) where the gauge field dynamics is solely
governed by the Chern-Simons term in this paper.

The addition of Chern-Simons gauge terms to classical CP(1) model and the
particular choice of potential terms give the finite energy solitons and a Bogomol'nyi
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limit or self-dual equations which are easy to analyze mathematically compared to
full second order Euler-Lagrange equation.

On the other hand, like many other low dimensional systems, this model provides
an insight for the study of phenomena expected to occur in 3+ 1 dimensional gauge
theories & can be interpreted as an effective theory for the description of strongly cor-
related electrons such as superconductors and quantum Hall effect (¢f. Wilczek [14]).
We also note that the Bogomol’nyi limit in superconductivity plays an important
role as it permits to distinguish between the type of superconductors (cf. Bogo-
mol’'nyi [2]). For an overview of self-dual Chern-Simons theories, see Dunne (4] and
references therein.

The 2 + 1 dimensional CP(1) model consists of two complex scalar fields z1, 2,
in R2. Denoting z = (21, z2), the model requires that |z|> = 2121 + 222 = 1 and z
is equivalent to the overall phase rotations. Thus if we can find ¢ = 23/2;, then we

have that z ~ (1,¢)/y/1 + |¢|%.
The Lagrangian for the self-dual Chern-Simons C'P(1) model is

L= gs‘“”’Au&,AP + V2|2 - V(2)

where e#? is the totally skew-symmetric tensor with €12 = 1, R = diag(1/2, —1/2),
ALR is the matrix valued gauge field, V'(z) is a potential term which will be fixed
later & the “covariant derivatives” V, and D, are defined as follows:

Vu.z =D,z —(2D,z)z, D,z =0,z iA,Rz.
The Gauss law constraint obtained from the variation of Ag is given by
kF1o = z'{VOZ [Rz - (ZRz)z} — h.c.}

where Fiy = 0143 — 02A1. The theory possesses the following conserved topological
current K* and global U(1) current J* for the generator R,

K# = —ietP9,(zDyz), J" =1i{V*Z|Rz — (ZRz)z] — h.c.}.
For the static configuration, we choose the potential as given by
V(z) = ;15[ [Rz — (ZRz)z](ZRz — s)'2
for a free real parameter s & we rewrite the energy density as
£ = |Voz|? + [Viz|? + |Vaz|* + V()
= (Vi £1V,)z|? + ‘Voz ¥ %{[Rz — (zRz)z](zRz — s)}|2 + (Ko ~ %Jo).
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Thus the field configurations saturating the energy bound

B= [(Ko— (s/5)30) 2 0
satisfy the Gauss law constraint and the following self-dual equations,

(V1 + ’iVQ)Z =0

1) Voz ¥ %{ Rz — (2Rz)z] (zRz - 5)} = 0.

2. THEOREM

In this paper, we will prove the following theorem:

Theorem 1. For any & > 0, —1 < 2s < 1 and disjoint sets of points P = {p1,
.yPn}, @ = {q1,-..,qm}, there exzists a topological finite action solution (z, A) to
the self-dual equation (1) with the following properties.

(i) (z,A) is globally smooth.
(ii) The sets of zeroes of z; and zg are P and Q) respectively, and
z1(z) ~ cri(x —pe)™  mear py and ¢y # 0
23(x) ~ cok(T — @)™ mear g and cox #0
where npy and my are the multiplicities of py and qi in the sets P and Q respec-

tively.
(iii) |z1]2 — (1 +2s)/2 and |z2|? — (1 — 25)/2 as |z| — .

Moreover, for any decreasing sequence {k,} which converges to 0, and

K cc R%~ {Ur{qr} Ve {pe}},

there is a sequence of topological solutions {(z"", A**)} such that

1-2s

| ﬂl2-1+28

27 < Ce™0/% |25 - < Ce/* inK.

We remark that multiple existence of multivortex solutions under the doubly
periodic boundary condition and its asymptotic limits are studied in Chae & Nam [3],
Han & Nam [5], and Nam [9]. The studies on the Chern-Simons-Higgs theory
(cf. Spruck & Yang [11], Tarantello [12], Wang [13]) motivate our work here.
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3. PROOF OF THEOREM 1

From the self-dual equations (1), without loss of generality, we can choose the

upper signs. Introducing complex differentiation

(61 + 7,82) and & = (Al + ZA2)

0="7 2

we obtain that

Z25z1 - Zla_Z«z = 2121224
Thus, away from the zeroes of z; and zg, ¢ = 25/2; satisfies
(2) dln¢ = —2ia.

Following the argument of Jaffe-Taubes [7], the zeroes of 2; and z, are discrete and

we can set ‘
21 =Y H(Z‘Pe)n‘, 22 =1 H(Z—Qj)mj, Zne =n, Zma‘ =m
¢ J ¢l J

where p;’s and qjv’s are distinct and v;, 9, are nonvanishing smooth functions. Thus
if the field configuration (z, 4) exists, it is globally smooth.

Noting that the action [L is invariant under the following gauge transformations
(3) z — (é 6?0) z, Ao — Ao, Aj — A]‘ bt 8j0,

where § is a real-valued function and j = 1, 2, we introduce a real valued function @
defined by

(4) = z—? = exp (g—l—i(ij arg(z—qj)—zne arg(Z—-pg))),
j ¢

so that the self~dual equations (1) reduce to

4(1+2s) e . 1—2s '
" (1+eﬁ)3(eu_____1+28)+47erj5qj—471’an51,€
7 14

Au =

in R2. Here we impose the topological boundary condition
1-—2s
1+ 2s

If % is once found, then we can recover (z, A) by equations (2), (4) and the equivalence

@(z) — In as |z| — oo.

relation

(1,6)
VitIoP

~
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For simplicity we change the variable @ — In(1 — 2s)/(1 + 2s) by u to obtain the

following boundary value problem:

4(1 4 2s)% e¥(e* - 1) . o
%) Au=n2(1—2s)(eu+1—'%§ +47er] 4 47ang6m in R%,

u—0 as|z|] — oco.

To show the existence of solution, we consider the following associated problem:
Au. = 4(1 +2s5)? eu-(e¥- - 1)

(6) K2(1 = 2s) (eu- + 1332)°

u_ — 0 as|z| > oo.

+ 47rz m;by; in R?,
J

If u_ exists, then u- < 0 by the maximum principle and is a subsolution to the
original problem(5). The existence of u_ follows from iteration and variational
arguments and we will briefly sketch the proof.

Introducing background functions

|x—q]| 4m;
= 1 = )
w= ij "Ttlz-gP ¢ zj:(l+|x_QjI2)2

g;1%’
v =u_ —ug satlsﬁes
A 4(1 + 25)% euotv(guotv — 1)
V= —on o wotv . 1425\3
(7) K2(1 = 25) (evotv + {E32)°

1-2s

+g inRg,
v—0 as|z|— oo

For K > 1/k?%, we define an iterative scheme by

4(1 + 23)2 uo+vn( uo+vn _ 1)

A—-K)vpg = — Kv, + guy,
(8) ( Jon+1 K2(1 — 2s) (euo+vn 4 134293 n gt
Uny1 — 0 as |z| — oo,
with the starting point vg = —ug. Then the sequence of functions {v,} is well

defined and v, > v,41 for all n > 0 by the maximum principle. To guarantee the
convergence to a solution, we use variational arguments and consider the associated

functional given by

1 o (14+2s)2, ewotv—1
Flo) = /Rz Vel 0 (euo+v + 132

1-2s
Since ug + v, < 0 and the function
(1+23) ( euoty — 1 )2 K ,

- —v
ug+v 1+2s
€ + 1-2s 2

2
) +ov, veH\®).

$(v) =

K2
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is concave, we obtain that
(9) F(upt1) < F(u,) foralln>1.

Indeed, multiplying (8) by vp+1 — v, and integrating by parts, we obtain that

/ B(Un11) — B(vn) + (Uns1 — vn)

IA

, ¢/ 'U'n (vn+1 - 'Un) + g(vn+l - Un)
R

(Unt1 — ) (A — K)vpq

\,

]RZ

~V(vnt1 = vn)VUngy — K(Ung1 — Un)Unt1

R’Z
K K
/ __lvvn+ll + —[an]2 - —lv(vn+1 )|2 — S Vg1t _'Urzx
R2 2 2
K
_E(Un+1 — Up)

Thus
1 K
Flonin) = | | 51901l + 9(00s0) + 30211 + gons

1 K 1 K
< [ 1700 + 60n) + S+ gon = 219 (et = ) = (e — v
R2

1 K
= F(vy) — z|IV(vng1 — ”n)”%2 = —llvnt1 — Un”%%
2 2

and (9) is proved.
On the other hand, variational argument in Wang [13] implies that F(v,) is
coercive in H!(R?) and

(10) lvpllgr < C(F(vp)+1) foraln>1.

Indeed, from the following estimates

2(1 + 25)2 ( ewotv — 1 )2 S a4+ 25)2(1 —2s)  2lug + v|?

K2 euotv 4 1425 2K2 (1 + |ug + v|)?
S 1+ 2s)2(1—2s)  v%—2ud
= 2k2 (1 + |ug| + [v])?’

and

1/2 1/2 C
< clvlips < CIoIZ NVl < mllvlize + 1l Vol2e + =

o
R?
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we have that

1 (1+25)%(1 — 25) v
F(v) > EIIWHQLZ’ + /Rz (

2K2 1+ |v] + |ug|)?
(1+25)%(1 - 2s) ul , C
K2 r2 (1 + |ug|)? ellze n”VUHLz n?
1 s (1+25)2(1 - 2s) / v? C
> - - = -C.
=z 4HVUUL2 + 2k2 R (1 + [’U[ n |U0|)2 77||U||L2 ] C
By Holder inequality and Young’s inequality, we have that
1+ I’UI + |uo|
2 _ 2
oz2 /IR? YT+ |U| + [uol
L 1
< 2 2 21\ 2
(/]Rz 1+ ]vl ¥ |uol)2) ( o 01+ [0+ fouol) )
c v :
<
<o( [ i) vlae + lolzal ollza + 1)

) 1}2 2
< Sl + 1990 + O [ ) O

and hence
2 v?
[vli72 < C(”W”L2 + /Rz A7 o] + Juol)? 1>
(1+25)%(1 — 25) v? <
< C<F(”) - 2K2 g2 (1+ [v] + |ug|)? *olvlee + n?

’U2
+C+/Rz T o + Tol)? “>
< C(F () +nllvllze +1).

Since C is independent of 77, we can choose 1 sufficiently small to obtain that
vl < C(F(v) +1)

and hence (10) holds.

Moreover, the standard elliptic regularity estimates imply that {v,} is bounded
in H*(R?) for k > 1 and converges to a solution of (7) in C¥_ (a subsequence if
necessary).

Similarly, we can show the existence of u; > 0 as a solution of

4(1 + 25)? eu+(e¥+ — 1) in R2
Auy = 21— 25) (%7 1 1+ 47r§:ne6pl in R*,

uy — 0 as|z| — oo,
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which is a supersolution of the original problem (5). Again by the iterative scheme,
we obtain the existence of a topological solution u® for the original problem for
any K.

Now, we give a proof for asymptotic limits. For any given decreasing sequence
{£n} (n=0,1,...), we observe that the solutions u"® < 0 of (6) is a subsolution of
(6) for k,. By similarity, we can construct sequences of solutions {u""}, {u"}, {u""}
which satisfy v

< uft <ut o <ulr <ul?, ult <0 <ulr,
and it suffices to show the exponential decay of u"" and u%".

For any compact subsets K CC K’ CC R? \ Ug{qx} Ue {pe}, choose any x5 € K

and d > 0 such that B,,(2d) C K’. Since ¢ < u®™ <0,

4(1 4 25)2 e~ (€4 - 1)

A Kn — i < . . KI
“- k2(1 — 2s) (eu—" n ifgi):" <au’™ in
where
4(1 + 2s 2 a0 (eao -1 -
“= 2(1—2)) ao 1+2.s‘)3>0’ —°°<a0:ffll<1}luf°<0.
n 5 ao(e + 1—23)

For w(z) = Cexp((|z — zo|? — d?)/k), if d is sufficiently small and n is sufficiently
large, we have that

2]1? - Z0|2

4
(A—a)(ufn+w)g( +K——a>w50 for |z — zo| < d.

K2
Since ©*" is bounded from below by u*®, we can choose C sufficiently large such that
u™ +w > 0 on |z — x| = d. Hence u®* > —w for |z — 2¢| < d. Since K is compact
and z¢ € K is arbitrary, we can conclude that the sequence {u""} locally uniformly
converges to 0 as k goes to 0 and the convergence is exponentially fast. Similarly,
{uZ"} locally uniformly converges to 0 exponentially fast and this completes the

proof of Theorem 1.
4. CONCLUSIONS

In this paper we showed the existence and asymptotic limits of the topological
Chern-Simons vortices of the CP(1) model in R2. While the range of the parameter
& for which the existence is guaranteed is limited in doubly periodic domain (cf.
Chae & Nam [3]), the topological boundary condition .plays a role in the whole

plane such that the variational argument can work for any x. We expect that the
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boundary condition for the case of whole plane is closely related to the asymptotic

limits in the doubly periodic domain. We will pursuit this direction in the next

paper.
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