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MULTIPLE EXISTENCE AND UNIQUENESS OF AN ELLIPTIC
EQUATION WITH EXPONENTIAL NONLINEARITY

KwANGSEOK CHOE AND HEE-SEOK NAM

ABSTRACT. In this paper we consider a Dirichlet problem in the unit disk. We show
that the equation has a unique or multiple solutions according to the range of the
parameter. Moreover, we prove that the equation admits a nonradial bifurcation at
each branch of radial solutions.

1. INTRODUCTION

We are interested in the following equation

200 ,u
— Ay = )\ﬂ;__,
(1) v fBl ,:L‘l cet
u =0, on 0B;

in Bl,

where A and « are positive constants. B; will denote the unit disk {z € R? | |z| < 1}.
When o = 0 and the domain B, is replaced with a smooth bounded domain in

R? we have
u

—Au = /\——‘-3—-—, in ,
(2) Jaer”
u =0, on 0f1.

Equation (2) arises from Onsager’s vortex model for turbulent Euler flows. In
this case, u can be interpreted as the stream function in the infinite vortex limit.
See Marchioro & Pulvirenti [14]. Equation (2) is the Euler-Lagrange equation of the
following functional

(3) Iy(u) = —;-/Q|Vu|2da: - )\ln/ﬂe"dx, u € H} ().
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Caglioti, Lions, Marchioro & Pulvirenti [8] and Kiessling [12] proved that I, has a
global minimizer for A < 8x, which is based on the Moser-Trudinger inequality.

If A > 8, then the functional I is not bounded below for A > 8, and it does
not have a minimizer. In this case, the solution structure depends on the geometry
of (2. For example if §) is a unit disk, then the Pohozaev identity implies that (2)
admits a solution if and only if A < 8x. It also follows from the maximum prlinciple
Gidas, Ni & Nirenberg [11] that if Q = B; and 0 < A < 87 then every solution of
(2) is radially symmetric, and the solution is unique. Moreover, the solution blows
up as A — 87,

When (Q is an annulus, Ding, Jost, Li, & Wang [10] proved that equation has a
solution for 8m < A < 167 by using the minimax method. Later, Chen & Lin (7]
established existence results for A € (0,00) \ {87m | m € N} by computing the
degree of the associated operator

- e”
T(u) =u+AA 1(fgeudz>'
If & > 0 we see that the weight function |z|?* appears in equation (1). This kind

of equation is related to the self-dual equations arising in the relativistic Chern-
Simons-Higgs model (see Chae & Imanuvilov [4] and references therein), and the
electroweak theory. For the electroweak theory we refer the readers to Bartolucci
& Tarantello (3] and references therein. Equation (1) is also closely related to the
conjecture of Wolansky. See Wolansky [17].

It follows from the Pohozaev identity that equation (1) admits a solution only if
A < 8n(1 + a). Moreover, equation (1) has a unique radial solution

c 2
(4) ur(r) =In (—c,\(%;?l‘);m’

=z,
with ¢y =87 (1 + a)/A — 1.

In order to establish multiple existence result, we adopt the variational formula-
tion for (1). It is easily checked that every solution of equation (1) is a critical point
of the following functional
(5) Ja(u) = 1HVuH% ~ /\ln/ r2%e¥ dx

2 B
for w € H}(B;) and A < 87(1 + ). We note that Jy is not bounded from below for
8n < A < 87(1 + ). Moreover, it follows from the Green’s representation formula,
and the argument of Struwe & Tarantello [15] that if A > 0 is sufficiently small then

uy is a unique critical point of Jy, and hence a strict local minimizer of J,. We will
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find a A; which is an infimum of A, such that uy is a strict local minimizer of Jy for
0 < A< Ai. If Ay > 87 then we will be able to find a saddle point of Jy, which is a
second solution of (1).

Concerning the multiple existence, we have
Theorem 1. If 87 < A < 4w(a + 2) then equation (1) admits a nonradial solution.

In order to prove Theorem 1, we will study an associated eigenvalue problem for
the operator Jy (uy) which is the second derivative of Jy evaluated at uy. We will
prove that the first eigenvalue A; is equal to 47(a +2). Then we will be able to find
a critical point of Jy by using the mountain pass argument employed by Struwe (see
Bartolucci & Tarantello (3], Ding, Jost, Li & Wang [10], Struwe & Tarantello [15]
and references therein).

Moreover, it will turn out that A, = dn(a+n+1) (1 < n < a+ 1) is also
an eigenvalue for the associated eigenvalue problem. If we restrict ourselves to the
suitable subspace X of H}(Bj) we will find that )\, is a simple eigenvalue of JY (uy)
in X. In this case, the argument of Crandall & Rabinowitz [9] works, and we will
have a continuous branch bifurcating from u). See Theorem 5 below.

Finally, we will also establish uniqueness result for (1). For this purpose, we will
use the isoperimetric inequality as well as the Schwartz symmetrization which was
used in Bandle [1], Chang, Chen & Lin [5] and Suzuki [16].

We have the following uniqueness result.

Theorem 2. If0 < A < 87 then equation (1) admits a unigue solution.

Remark. Theorem 2 also holds true when B is replaced with a smooth bounded sim-
ply connected domain 2 containing the origin. Moreover, every nonradial solution
of (1) always blows up as A — 8=+,

_ In the rest of this paper, we will prove Theorem 1 and Theorem 2.
2. EXISTENCE AND UNIQUENESS RESULTS

We begin this section by proving Theorem 2.

Proof of Theorem 2. We will prove the following linearized equation
z?%e%e | g lal®e'p)|z|**e”

A A —
P kP ds (JalaP2e)?

=0
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admits only a trivial solution in H}(2) when 0 < A < 8m. The proof follows
from the argument of Suzuki [16] and Chang, Chen & Lin [5), and it is based
on the symmetrization procedure with a variant of Alexandrov-Bol’s inequality: If
p € C%(Q) N C°(QN) satisfies ~Alnp < |z]**p in Q C R?, then we have
LR 2 Sm(@)(r ~ m(®),

where 1(8Q) = [5q, |z|*pds and m(Q) = [, |z[**pdz.

Note that the function U(z) = —2In(1 + %imlz) satisfies —AU = eV in R?. We
adopt a spherical symmetrization procedure with respect to eV and

Ae?
PA= Jo lz|?*ev dz”

For instance, we may adopt the procedure of spherically decreasing rearrangement.
We define an open ball 2} by

J

and define v*(z) = sup{t | = € Qf}. It is well known that this rearrangement is

eVdr = / |z)%%py dz
{v>t}

*
t

equi-measurable and it decreases the L?-norm of the first derivative.
Then we can repeat the argument in Suzuki [16] and Chang, Chen & Lin [5] to
complete the proof. We skip the details. O

In the rest of this paper, we will establish the multiple existence result for (1).

2.1. Proof of Theorem 1

The proof will be given in several steps. Clearly, v = u), is a critical point of J).

For convenience, we let
)\,r2ae’u,)‘
fBl 7-2an)‘ )

In order to determine the values of A where v = u,), is a strict local minimum of J),

grx =

we consider the second derivative of Jy. For ¢ € H}(B;), we have

6) B =196l = [ agtde+3( [ anpdz)”

In order to proceed, we consider an eigenvalue problem following the argument of
Suzuki [16]. We introduce H}(B;) = {v € HY(B;) | v = const. on B} and define
an eigenvalue K = K () by '

(7) K =inf {uvvug |v e HY(B), /B gl dz =1, /B gavdz = o}
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Then it suffices to find the values of A at which K > 1. Indeed, given ¢ € H}(By),
let ¢ = — i— B, grpdz € H(By). Since fBl grpdz = 0, we obtain

Rw)ee) = 1991 - [

1

=2 2
o dr > (1 ) Vlls.
1 K Vellz

The value K in (7) is the second eigenvalue for the eigenvalue problem: To find
a € H(B;) \ {0} and K € R such that
Vi -Vudr =K gpvdz  for any v € HY(B,).
B B1
Then the second eigenvalue for (7) is attained by a function ¥ € H}(B;) satisfying
-AY=Kgy, By,
¥ = const., 0B,

%da = 0.
8B 81/

(8)

Since g, is radially symmetric, it is more convenient to consider the Fourier expansion
of ¥ € C%(B;) N C°(B,):
o

9) Y(r,0) = o(r) + Z(t/}ln(r) cos né + on () sinnf).

n=1
Then equation (8) is reduced to a series of ODE’s. Substituting (9) into (8), we
obtain

1
024 — ;aﬂﬁo =Kag, 0<r<l1

(10)
ar":bO(l) =0,
and
— 3%y — La VYin + "—2¢~ =Kg\in, 0<r<1
(11) T ¥Yin T TYin T mn my b

where n > 1, i = 1,2. Concerning the eigenvalue problem (10) and (11), we define
the eigenvalues K(© and K™ neN,n<1+a by

(12) KO = inf{||Vv||%2(Bl) | v € HY(B)) is radial ,

/ gvldr = 1,/ govdr = 0}
By B3
and

1 2 1
(13) K™ =inf{/ (rlB,0? + “v?)ar | (1) =0,/ rox?dr = 1}.
0 T 0
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It is easy to check that there is a minimizer vy (resp. v,) which corresponds to
KO (resp. K (")) such that vg changes sign once and only once in B;, while v, is
definite. It is clear that K defined in (7) is given by K = min,>o{K“}. The
following lemma shows that K > 1 if and only if A < 47 (o + 2).

Lemma 1. KO > 1 i\ < 8n(1+a) and K™ > 1 if and only if X < 4n(a+n+1).
Moreover, K™ < K1) forn > 1.

Proof. Note that the following ODE
1
—8%v — ;8,1) =qwv, 1>0

has two independent solutions &3, &, given by
cy — r2ot2 L
2(cx + r2ot?) - p2ot2’

Let 21 = {*vp > 0} be the two connected nodal domains. Without loss of
generality, we may assume {1, = Bp,. It follows from maximum principle that
d = ¥(09Q) # 0, and we assume d < 0. Since A < 87(1 + «), we have two cases;
either fQ+ gndz < 4n(1+ ) or fQ+ grdz 2 4n(l + o).

The condition fQ+ grdz < 4n(1 + a) is equivalent to Rg“"’z < c¢y. Consequently,
&, is positive in Q, which in turn implies K ©>1.

If fn+ gadz > 4n(1 + a), the solution ¢ of the following equation

bo(r) = -1+

1
—a,?d) - ;3r1/’ = g/\¢) RO <r< 1)

1/)(1) = -1,
g9(1) =0
is given by
2042 2042
_ o Cy—T (1—B)C)\ _ CA\—T
E(T) - (1 B )[ 1+ 2(6)\ + ,,.2a+2) n (1 + B)7-2a+2] ey + r20+2’

where B = (c) — 1)/(cx +1). Since R2**? > ¢, and ¢ is strictly decreasing in (0, 1),

we have .

£(r) < €(c™)=-14+B? <0 forr € (Ro,1),
which in turn implies that K(® > 1. Consequently, K(® > 1 for X € (0,87(1 + a)).

The minimizer v, for K™ satisfies
2 1 n2 (TL)
—0rvp — ;Brvn + ~3Un = K%, 0<r<l

vp(1) = 0.
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We note that for each n=1,2,...,

(a+n+1)cy — (o —n+ 1)r2et?
(14) W (T) = TR r®

satisfies the following ODE (see Baraket & Pacard [2]).

9 1 n?
—0:v — =0wv + —v=gwv, 7>0.
r T

Consequently K™ > 1 if and only if w, > 0 on (0,1], which is equivalent to the
condition A < 4n(a + n + 1). The last inequality is obvious. (]

Remark. v = uy is not a local minimum of Jy if A = 4n(a + 2). Indeed, for any

nonzero b € span{w, cos#, w; sinf}, we have

4

i
Ja(tb) — JA(0) = 3/, gbtdz +0(t%) <0
1

for sufficiently small |t > 0.
Therefore we have proved the following proposition.

Proposition 1. v = uy is a strict local minimum of the functional Jy if and only
if A€ (0,4n(a + 2)).

On the other hand, it can be shown (c¢f. Wang & Wei [18]) that given X €
(8m,4m(a + 2)), one can choose a small interval I = (Ao — §, A9 + d) such that
A € I CC (8m,4m(a + 2)) and construct a test function (; € HJ(B;) such that
JIa(¢r) < Jxa(un) for all A € I. Moreover, there is a constant p = p(I) > 0 such that
Ia(uy) < inf“‘/"“*o”fzg(sl):ﬁ’ Jxa(p) for all A € I if § > 0 is sufficiently small.

Let S = {y € C[0,1], H}(B1)) | 7(0) = uy, and v(1) = ¢;} and define a
minimaz value cx = infyegsupyeoqy Ja(¥(t)). Then it is easily checked that the
map A — 2 is monotonically decreasing for A € I. Applying Struwe’s argument
(cf. Struwe [15]), we obtain the following lemma.

Lemma 2. There ezists a dense subset A C (87, 4n(a + 2)) such that equation (1)
admits a nonradial solution vy such that Jy(vy) = cy for any X € A.

Let vy, be a sequence of nonradial solutions with A, € A and A, — X. It can be
shown from the method of moving planes that there is a constant § = §(a) > 0 such
that Vv,, does not vanish in {0 < |z| < 1}. Indeed, given zg € 8By, let us consider
the disk Br(p) with p = (R + 1)x¢. By rotating, we may assume zo = (—1,0). We
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perform a reflection z € By » y =Tz = p+ ll'i(x_ﬁl with respect to Bgr(p), and

define wy,(y) = v, (x). Then equation (1) transforms to

A R%(y — p) |2
A n n Wn = — —4’ DI LA
Wy, + N g W =0 fw) =ly—rpl"p+ T 0
Moreover we have
of -8 y—p |22 y—p |?
==2ly—p ] = (2 y y—p ‘p+ ’
ay | I ly _ p[2 ( 1= P1)| I l2

~ o(Bpily — pl? ~ 2B2p1 (1 ~ p1)* — R(1 — p1)))-

It is easily checked that 8f/dy; < 0 when R = 1/(a + 1). An application of the
method of moving plane shows that w, cannot have a stationary point in a small
neighborhood of zo € B; in T(B;) (see Gidas, Ni & Nirenberg [11] for details and
see Chen & Li [6] as well).

Let us fix a compact domain ¥ in B such that vy, does not have any stationary

point in . We are in position to apply the following version of Brezis-Merle’s result.

Theorem 3 (Bartolucci & Tarantell [3]). Let uy, be a sequence of solutions of the
equation —Auy, = A,|z|>**e¥* in By with a > 0 and A\, — A > 0. Then (passing
to a subsequence) one of the following alternative holds:
(1) supg |ur,| < Cs,
(ii) supy vy, — —00,
(iii) There exists a finite and nonempty set S = {qu,...,q} C X, l € N, and a
sequence of points {z},x2,..., 2L} C By such that zt, — ¢; and

uy, (22) + 2aln|zi| = 00 for i=1,...,L

Moreover sups{uy, } — —00 on any compact set K C £\ S and |z|**e**» —
22:1 Bi,, in a measure sense, furthermore fB; € 87N if ¢; # 0 and f; > 8w if
g =0 for somei=1,...,1L.
Suppose that g1 = 0 and fix a domain D such that D NS = {0}. If uy, satisfies
a “mild” boundary condition on 8D, in other words, if there is a constant Cy such

that maxap uy, — mingp uy, < Cp then f = 8n(1 + «).
We are now in a position to prove Theorem 1.

Proof of Theorem 1. vy, be a sequence of nonradial solutions with A, € A and
An — A. The Dirichlet boundary condition for vy, implies that vy, satisfies the above

mild boundary condition in a suitable neighborhood of the origin. Consequently,



MULTIPLE EXISTENCE AND UNIQUENESS 187

Theorem 3 and the maximum principle imply that {vy,} is uniformly bounded in
T if A, — A € (87, 4n(a + 2)) \ 87N. Then Theorem 1 follows from the standard
elliptic estimates. a

2.2. Bifurcation phenomena In the previous section we obtained the first eigen-
values for the eigenvalue problems (10) and (11). We will prove that equation (1)
admits a continuum of non-trivial solution bifurcating from these eigenvalues.

For this purpose, we introduce a compact operator G = A7 C&"Y('B_l) —
C,”"(B;) and a nonlinear operator F : (0,87 (a+1)) x CyY(B)) — Cy"(By) defined
by .

’ IlZa eu)‘+v
f31 |x|2a€“*+v)

for a fixed exponent v € (0,1). Then we have F(A,0) = 0 for all A and

(15) F(\v) = v+u,\+AG<

A
Recall that w, is given in (14) and let us define ¢p,4, ¥, € C’é Y(By) by

Fy(\, 0w =w + G(gw) + lux/ gw dx.
B

On4 = Wy cosnb, @p_ = wysinnd.

The proof of Lemma 1 shows that Ker F,(u,,0) = span{@,+, n_} with u, =
(o +n+1).

The next lemma shows that the set {4, }1<n<a+1 exhausts all the values A where
Ker F, (A, 0) is nontrivial.

Lemma 3. For eachn =1,2,--- ,[a] + 1, define the second eigenvalue by

1 2 1 1
K,E") = inf {/ (rvf + nTUQ)dr | v(1) = 0,/ rgav? dr = 1,/ T UV AT = 0},
0 0 0

where v, is the minimizer of (13). Then K*") >1 for eachn=1,...,[c] +1.

Proof. The eigenvalue K. ,E") is attained by a function %, satisfying

1 2
—837107& - ;aﬂ/}n + :—2% = :(‘n)g)\wm O<r«l,
d’n(l) =0,

1
/ TG Unn dr = 0.
0

We introduce two independent solutions wy(r) and w,(r) = —wn(r) frl E,%s(—s) of
the ODE —0%v ~ %Brv + %;v =gy, 0 <7 <1 Let Ry € (0,1) be the unique
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zero of ¢, and we consider the two cases: either fORl rgrndr < 4r(a +n+1) or
foRl rgxndr > 4m(a+n+1). Let us study only the latter part. In this case, we have
wy, < 0 on {R;,1]. The solution of the following ODE

9 1 n?
—3r¢—;3r¢+ T—2¢=g,\¢, Ri<r<l1
#(1) = 0, (1) =1

is given by ¢(r) = w,(1)w, (r), which is negative on (Ry,1). Moreover, lim,_, g, ¢(r)
exists and is negative. This implies K ,En) > 1. 4

Consequently, the above arguments show that F,(),0) : C3”(By) — Ca"(By) is
an isomorphism if and only if A € (0,87 (a+1)) N {tn }1<n<a+1, and Ker F,(j1,,0) =

span{¢ny, Pn-}. _
We will apply the theorem of Crandall & Rabinowitz [9].

Theorem 4. Let X,Y be Banach spaces, V a neighborhood of 0 in X and F :
(—=1,1) x V — Y have the properties
(a) F(t,0) =0 for |t| < 1,
(b) The partial derivatives Fy, F; and Fy; exist and are continuous,
(¢) N(F.(0,0)) and Y/R(F;(0,0)) are one-dimensional, and
(d) Fi2(0,0)20 ¢ R(F.(0,0)), where N(F.(0,0)) = span{zo}.

If Z is any complement of N(F3(0,0)) in X, then there is a neighborhood U of
(0,0) in R x X, an interval (—a,a), and continuous functions ¢ : (—a,a) — R,
Y : (~a,a) — Z such that ¢(0) =0, ¥(0) =0 and

F7HO)NU = {(8(s), sz + su(s)) | | s| < a} U{(2,0) | (£,0) € U}.

Motivated by the results in Lin [13], we define the subspace Co”(B;) C H(B)
by
Co"(B1) = {v € Cy"'(B1) | v(z1,22) = v(w1, —22)}-
Then the mapping F : (0,87(a+ 1)) x C’é Y(B,) — C’& "Y(B,) is well-defined and (a),
(b), (c) of Theorem 4 are all satisfied with Ker F,(n,0) = span{¢n+}. We also note
that
Fyy(pin, 0)pny = G(‘PTH-_d"’ 9A>‘
dA A=pn
It is easy to check
d 64m(a +1)3 ¢y —r2ot?
D= 32 (er + ,,-2a+2)3r
The next lemma shows that the condition (d) of Theorem 4 also holds.
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Lemma 4. For1<n<a+1 and y, =4n(a+n+ 1), we have

/B1 ‘sz:t(%’/\:ung/\) dz # 0.

Proof. For convenience, we set ¢, = c,,,. It suffices to show that

Ao /1 (cn _ T2a+2)(1 . T2a+2)2,r2n+2a+1 dr > 0.
: 0 (Cn -|—T'2°‘+2)5

Notice that integration by parts gives

1 1 n
/ i
0 (Cn+t)

1
_ a+1 / 1 it%dt
a+n+1Jy (cn+t)dt

1
=4(a+1) ( 1 )t?ﬁdt+ a+1 ,
at+n+1Jy \(ca+8)* (ch+t) (a+n+1)(1+cp)?

which implies

1 — n 1 T
/——C" tsta_ﬂdt=/< 2n - 1 4)t'&ﬁdt
0o (cn+1t) o \Mcn +1) (cn + 1)

_ a+1 +2cn(a+1—n) 1 4ait &t
T Ba+3-—n)(1+cy)t 3a+3—-n Jy (cn +1)°

> 0.

Since the map t — (¢ —1)? is strictly decreasing in (0, 1), the quantity A is positive.

Indeed, we obtain, with substitution ¢t = r2®+2,
(20 +2)A /c" Cn 1) gy /1 il S
a Pt p— o — — o
o (cn+1t)P cn (Cn +1)°

C 1
" cp—t [ n_ 9 t—c, ,.n_

>(l1—-c¢ 2/ ——tetidi — (1 —¢ —————to+1 dt

> 0. a

Therefore, we have proved the following theorem.

Theorem 5. The branch uy of radial solutions of (1) has a nonradial bifurcation
at each A = pup, =4n(a+n+1) for 1l <n < a+1, n € N. Furthermore, the set of
bifurcating nonradial solutions is two dimensional in a neighborhood of (pin,u,, )-
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