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NATURAL FRENET EQUATIONS OF NULL CURVES

DAE Ho JIN

ABSTRACT. The purpose of this paper is to study the geometry of null curves in a
Lorentzian manifold (M, g). We show that it is possible to construct new type of
Frenet equations of null curves in M, supported by two examples.

1. INTRODUCTION

The theory of space curves of a Riemannian manifold is fully developed and its
local and global geometry is well-known. Spivak [11] published his work on curves
in a Riemannian manifold. He showed briefly how the Frenet-Serret formulas in R3
generalize and derived several results which are needed to discuss higher dimension.
His study was restricted to Riemannian manifold. In case of curves in a Lorentzian
manifold, there are three categories of curves, namely, spacelike, timelike and null,
depending on their causal character. We know from O’Neill [10] that the study of
timelike curves has many similarities with the spacelike curves.

Duggal & Bejancu [3] published their work on general theory of null curves in
Lorentz manifolds. They constructed a Frenet frame and proved the fundamental
existence and uniqueness theorem for this class of null curves.

The objective of the present paper is also to study on null curves in a Lorentzian
manifolds (M, g). We show that it is possible to construct new type of Frenet
frames suitable for (M, g) (called natural Frenet equations) which is more simple
type than Duggal and Bejancu [3]. In particular, we study some invariant properties
of curves. Much of the work will be immediately generalized in a formal way to semi-

Riemannian manifolds.

Received by the editors July 25, 2005.
2000 Mathematics Subject Classification. 53B25, 53C40, 53C50.
Key words and phrases. null curve, Frenet frames.

(© 2005 Korea Soc. Math. Educ.
211



212 DAE Ho JIN
2. TRANSVERSAL VECTOR BUNDLES

Let (M, g) be a real (m+ 2)-dimensional Lorentzian manifold and C be a smooth
null curve in M locally given by

ot =2(t), teICR, i€{0,1,...,(m+1)}

for a coordinate neighborhood U on C. Then the tangent vector field A = % on U

satisfies
g(A, Ay =0.

Denote by T'C the tangent bundle of C and TC*t the T'C perpendicular. Clearly,
TC* is a vector bundle over C of rank (m + 1). Since X is null, the tangent bundle
TC of C is a vector subbundle of TC*+, of rank 1. This implies that TC* is not
complementary to TC in TM|c. Thus we must find complementary vector bundle
to TC in TM which will play the role of the normal bundle TC* consistent with
the classical non-degenerate theory.

Suppose S(T'CL) denotes the complementary vector subbundle to TC in TC*,

i. €., we have
TC+ = TC L $(TCh)

where L means the orthogonal direct sum. It follows that S(TC*) is a non-
degenerate vector subbundle of TM, of rank m. We call S (T'C*) a screen vector

bundle of C, which being non-degenerate, we have

TM|c = S(TCt) L S(TCH)*, (1)

where S(TC’J')'L is a complementary orthogonal vector subbundle to S(TC1) in
TM|c of rank 2.

We denote by F(C) the algebra of smooth functions on C' and by I'(E)) the F(C)
module of smooth sections of a vector bundle E over C. We use the same notation

for any other vector bundle.

Theorem 1 (Duggal & Bejancu [3]). Let C be a null curve of a Lorentzian manifold
(M, g) and S(T'CY) be a screen vector bundle of C. Then there exists a unique vector
bundle ntr(C) over C, of rank 1, such that on each coordinate neighborhood U C C
there is a unique section N € ['(ntr(C)|y) satisfying

g(MN) =1, gV, N)=g(N,X) =0, "X eT(STCH). (2



NATURAL FRENET EQUATIONS OF NULL CURVES 213

We call the vector bundle ntr(C) the null transversal bundle of C with respect
to S(T'CY1). Next consider the vector bundle

tr(C) = ntr(C) L S(TCY),

which according to (1) and (2) is complementary but not orthogonal to T'C in TM|¢.
More precisely, we have

TM|c=TC & tr(C) = (TC & ntr(C)) L S(TCH). (3)

We call tr(C) the transversal vector bundle of C with respect to S(T'C*). The vector
field N in Theorem 1 is called the null transversal vector field of C with respect to
A. As {A, N} is a null basis of I'((TC @ ntr(C))|y) satisfying (2), we obtain

Proposition 2 (Duggal & Bejancu [3]). Let C be a null curve of a Lorentzian
manifold (M, g). Then any screen vector bundle S(TC*) of C is Riemannian.

3. GENERAL FRENET FRAMES

Let C be a null curve of an (m + 2)-dimensional Lorentzian manifold (M, g).
Since any screen vector bundle S(T'C*) of C will be Riemannian and g(Va\, A) = 0;
g(VA, N) = h, from the decomposition (3), we have

Var=hX+ Ry,

where R; € T'(S(T'C4) is a spacelike vector field perpendicular to A and N. Define
the first curvature function x; by k; = || Ry || and set W) = %, then W7 is a unit
spacelike vector field along C. Thus the above equation becomes

Vad=hA+ Kk W

Also, from g(VaN, X) = —h, g(VAN, N) = 0 and g(VAN, W;) = ka, where ks
denotes the second curvature function, we also have

V,\N=—hN-|—K:2W1+R2

where Ry € I'(S(T'C+*) is also spacelike vector field perpendicular to A\, N and Wj.-
Define the third curvature function k3 by k3 = || Rz || and set Wy = %, then Wy is

also a unit spacelike vector field along C. Thus we have

VAN = — AN + ko W7 + k3 Wa.
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Repeating above process we obtain the following equations

Vad=hA+r W,
VAN = —hAN + kg W1 + k3 Wo
VWi = —kaA— k1 N+ kg Wa + 65 W3
VaWs = —kg A — kg W1+ kg Wa + k7 Wy
VW3 = — ks Wy = kg Wa + kg Wy + kg Wy (4)

VaWn_1 = — kom-3 Win_3 = Kom—2 Win—o + K2 Wi

VaWn = — Kam—1 W2 — Kom Win-1,

where h and {ki, ..., kom} are smooth functions on U, {Wy, ..., W} is a cer-
tain orthonormal basis of I'(S(TC+)|y). In general, for any m > 0, we call F =
{\, N, Wy, ..., W} a general Frenet frame on M along C with respect to the
screen vector bundle S(T'C*) and the equations (4) are called its general Frenet
equations of C. Finally, the functions {ky, ceey Kom } are called curvature functions

of C' with respect to the General Frenet frame F.

4. NATURAL FRENET FRAMES

First, we consider two Frenet frames F' and F* along neighborhoods ¢/ and U/*
with respect to a given screen vector bundle S(T'C+) respectively. Then the general
transformations that relate elements of F' and F* on U NU* # & are

dt dt* -

* 4 * __ * B

A= N*==—N, Wa=>Y AiWg 1<a<m, (5)

B=1
where A5 are smooth functions on & N* and the matrix (A?Y (z)) is an element
of the orthogonal group O(m) for any z € U NU*. We call (5) the transformation
of coordinate neighborhood of C with respect to S(T'C+). Using (5) and the first

equation of the Frenet equations (4) for both F and F*, we obtain

d?t , dt dt \2
g T —h(dt*) '

Next, we also consider two Frenet frames F' and F (resp.) with respect to

(t, S(TCY),U) and (I, S(TCL),U) (resp.). Then the general transformations
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that relate elements of F and F on U N U # & are

Wa=§:3g(wﬁ—%CﬁA), 1<a<m,

where ¢, and BS are smooth funtions on U N and the m X m matrix [Bg (z)]
is an element of the orthogonal group O(m) for each z € U NU. We call (6) the
transformation of screen vector bundle of C. Also, using (6) and the first equation
of the Frenet equations (4) for both F' and F we obtain

f_t — —}Zfi—f = —h(dt)2 - K€ (d_f)3

e di dt di
Now we consider the differential equation of the form
d?t - dt
—_— -_— = 0
dt? dt

whose general solution comes from

t=a/_texp (/sﬁ(f)df)ds+b, a,beR.
to S0

It follows that any of these solutions, with a # 0, might be taken as special parameter
on C, such that h = 0. Denote one such solution by p = %, where t is the general
parameter as defined in above equation. We call p a distinguished parameter of C,
in terms for which A = 0. It is important to note that when ¢ is replaced by p and

= dip in the Frenet equations (4), the first two equations become
Vf 6 = K1 Wlu
V5N= ko Wi + k3 Wa

and the other equations remain unchanged.
In case k1 = 0, the first equation of the last relations takes the following familiar

form
d?zh = dzt dx?
. rh = = ..
ap? +:‘;0 Vap ap > e
where I“l’?j are the Christoffel symbols of the second type induced by V. Hence C is

a null geodesic of M. The converse follows easily. Thus we have
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Theorem 3 (Duggal & Bejancu [3]). Let C be a null curve of a Loremtzian manifold
(M, g). Then C is a null geodesic of M if and only if the first curvature x; vanishes
identically on C.

Theorem 4. Let C be a non-geodesic null curve of a Lorentzian manifold (M, g).
Then there ezists a screen vector bundle S(T'C) which induces Frenet frame F on U

such that Ky = K5 = 0.

Proof. From (6) and the first equation of the Frenet equations (4), we have

dt\2
ElBll=K,1<;ﬁ) ; 7{-13?=0,0¢€{2,...,m}.
Since k1 # 0 on U N U, we have K, # 0 on U NU and B} =...=B"™=0. Also

[Bg(:c)] is an orthogonal matrix, we infer that B} = B, = +1and Bl = --- =
Bl = 0. Also, from the third equation of the Frenet equations (4), we have

dt\ dt
7‘54B§ + ks Bg = Bll (Ii4 + ’ilc2ﬁ)?ﬁ,
_ _ di dt
K4 Bg + K5 Bg = Bll (/‘C5 + K103£)-d—z~ ,

dt2
R4B§‘+E5B§‘=B%n1ca<:ﬁ) , ae {4,...,m}
Taking into account that
KRq d_t- Rs df
= - — —; = —— — =0 S 4,...,
€2 K1 dt e K1 dt Ca > @ { m}

in the last equations and after some computations, we have K4 = &5 = 0.

Remark. If we take t = ¢ in Theorem 4, then ¢, = — ﬁ jC3 = — %;l and
. 1 2 2
V= (A3 e N - 2wy~ B,
2 K1 Ka K1

W2=W2+EA3
k1
W =Ws+ 23,
K1
W,=W,;, ie{l,4,..,m}

Relabeling N = N, Wy = W, Wa = Wy, k; =R, i € {1, 2,3} and S(TCt) =
S(T'C1) in the process of the above theorem and we take only the first four equations
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in (4) as follows:
Vad = h A+ ky Wi,
VAN = —h N 4 kg Wi + k3 Wy,
VoW, = —ka A~ K1 N,
VW2 = — K3 A+ Rs,
where Rj is a spacelike vector field in T'(S(T'C*t) perpendicular to A, N, W; and

W,. Define the new fourth curvature function x4 by k4 = || R3 || and let W3 = f’4 ,
then Wj is also a unit spacelike vector field along C. Thus we have

VW= —ka A+ Ky Ws.
Repeating above process we obtain the following;

Theorem 5. Let C be a non-geodesic null curve of a Lorentzian manifold (M, g).
Then there exists a Frenet frame F = {A\, N, W1, ..., W,,} satisfying the following

equations
Vil = hA+ ki Wi,
VAN = — AN + koW1 + k3Wa,
VW, = — koA — k1N,
VaWy = — kaA + kW3,
VW3 = — kaW3 + ksWy, (7)

VaW; = — kipaWic1 + ki2Wigq, 1€{2,...,m—1},

VaWn = = Emy1Win-1,
where {Ki, ..., km+1} are smooth functions on U, {Wh, ..., Wn,} is a certain or-

thonormal basis of T(S(T'C1)lu).

Corollary. Let C(p) be a non-geodesic null curve of a Lorentzian manifold (M, g),
where p is a distinguished parameter on C. Then there exists a Frenet frame
{\, N, Wy, ..., Wy} satisfying the equations (7) such that h = 0.

Definition. We call the frame F = {\, N, W, ..., W,,, } in Theorem 5 a natural
Frenet frame on M along C with respect to the given screen vector bundle S(TC*)
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and the equations (7) are called its natural Frenet equations of C. Finally, the
functions {k1, ..., km+1} are called the curvature functions of C with respect to

the Natural Frenet frame F.

Example 1. Consider a null curve C and its Frenet frames in R‘f given by

1
C(p) = E(sinhp, coshp, sinp, cosp),
1
= —= (coshp, sinhp, cosp, —sinp),
3 \/5( p p, cosp p)
1
N = —(—coshp, —sinhp, cosp, —sinp),
\/5( P p, COSP p)

1
Wi = — (sinhp, coshp, —sinp, —cosp),
1 \/2-( p p p p)
1 .
Wa = — (sinhp, coshp, sinp, cosp),
2 \/5( p p p p)
where p € R, then V¢{ = Wy, VeN = W, VeWr = =N, VeWy = €.

Example 2. Consider a null curve C and its Frenet frames in R} given by

1,1 1
C(p) = —=(=8° +2p, P2, =%, 2cosp, 2sinp),
(») 2\/5(310 p, 1%, 3P p p)
1, 9 X
= —(p“+2, 2p, p*, —2sinp, 2cosp),
3 2\/5(10 D, D p p)
z_i(p2+10 2p p2+8 6sinp —Gcosp)
8v2 P ’ ’ ’
1
Wi=—z=(p, 1, p, - cosp, —sinp),

W2 = _%(P, 1’ p, COsp, Sinp)a

Wi = —(p* -2, 2p, p* — 4, 2sinp, —2cosp).

NI,

where p € R. Then we have the following Frenet equations;

1 1
V{f = Wi, VEN = ZW1+§W2,
VeW; = 1{ N VW, = —-l-f-i--—l—W VeWs = ——1—-W
13448 W 4 P [ 344 2 \/5 3 Evvs \/5 2.
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5. INVARIANCE OF FRENET FRAMES

In this section we investigate the invariant properties of the Natural Frenet equa-
tions with respect to the transformations of the coordinate neighborhood and the
screen vector bundle of C.

First, with respect to a given screen vector bundle S(T'C), we consider two
Frenet frames F and F* along two neighborhoods U and U* respectively with non-
null intersection. Then using (5) and the first equation of (7), we have

dt \2
n’{A{=n1(%> ; K]AT =0, a€{2, ...,m}

Proposition 6. Let C be a non-geodesic null curve of a Lorentzian manifold (M, g)
and F and F* be two Natural Frenet frames onU and U* induced by the same screen
vector bundle S(TC*). Suppose H:’:;I Ki #0 onUNU* # ¢. Then we have

dt \2
o ('
Kl ﬁ:l 1 dt*
Ky = Ko A1, (8)
K3 = K3 Ag,
. dt
K’az’f'aAa——l%, 4 <a<<m+l1
where A; =41, 1<i1<m—1.
Proof. From the last relations, we have ] # 0 on U NU* and A2 = --- = AT = 0.

Since [Ag(m)] is an orthogonal matrix, we infer that Al = A; = +1 and Al =
.+ = Al = 0. Then from the second equation of (7) with respect to F and F*,
and taking into account that k3 # 0, we obtain 3 # 0 on U NU* which implies
A3 =A2=-- = A0 = A2 =0 and A3 = A; = + 1. Repeating this process for all
other equations of (7) and set A, = A2"1A% (a > 3), we obtain all the relations in
(8), which completes the proof. O

Proposition 7. Let C be a non-geodesic null curve of a Lorentzian manifold (M, g)
and F and F* be two Natural Frenet frames onU and U* induced by the same screen
vector bundle S(TC-). Then the second curvature ky and the third curvature k3 are
invariant to the transformations of coordinate neighborhood of C'.

Let F and F be two Natural Frenet frames with respect to (¢, S(T'C+), U ) and
(T, S(TC*), U ) respectively. Then the general transformations that relate elements
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of F and F on U N I are given by

~ dt
/\=-—:/\
dt’
= ldtX~, ., dt . =
N=--— —
2dt;(q)A+dt +;czwz, (9)
— dt
W1=BI(WI"E§CI)\)7
= dt
Wa= BS(Ws-Scsh), aef2..,m}
B=2

and Bi=B!=0(i #1); Bl =B =+1.

Proposition 8. Let C be a non-geodesic null curve of a Lorentzian manifold (M, g)
and F and F be two Natural Frenet frames on U and U respectively. Suppose
Mt £ 0 onUNU ¢. Then, their curvature functions are related by

i=1
dt\2
Ry = K1 Bl (-—_> 3

dt
— N dCl 1 dt\2
n2={l<,2+h01+'a-t-——§filc%<(‘ﬁ) }B1§ (10)
K3 = k3 By ;
dt
Ea=liaBa_l-(:i—z, a€{4,...,m},
where B =1, 1<i<m-landcy #0; co=---=¢,, =0.

Proof. From the third equation of (7) and (9), we have the first equation of (10)
and Ri1cq = 0(a # 1) on U NU. Thus we have ¢, = 0(a # 1). Also, from the
second equation of (7) and (9), we have the second equation of (10) and %3 BZ =
K3; K3 B§ =0 (a > 3). Thus we have By = B = +1 and B = B2 = 0 (a > 3).
Repeating this process for all other equations of (7) and set By = B2~} B (a > 3),
we obtain all the relations in (10), which completes the proof. O

Proposition 9. Let C be a non-geodesic null curve of a Lorentzian manifold (M, g)
and F and F be two Natural Frenet frames on U and U respectively. Then the third
curvature k3 is invariant to the transformations of the screen vector bundle of C.

REFERENCES

1. A. Bejancu: Lightlike curves in Lorentz manifolds. Publ. Math. Debrecen 44 (1994),
no. 1-2, 145-155. MR 95h:53090



10.

11.

NATURAL FRENET EQUATIONS OF NULL CURVES 221

W. B. Bonnor: Null curves in a Minkowski space-time. Tensor (N. S.) 20 (1969),
229-242. MR 4041909

K. L. Duggal & A. Bejancu: Lightlike Submanifolds of Semi- Riemannian Manifolds and
Applications. Kluwer Acad. Publishers, Dordrecht, 1996. MR 97e:53121

K. L. Duggal & D. H. Jin: Geometry of null curves. Math. J. Toyama Univ. 22 (1999),
95-120. MR 2001h:53096

L. K. Graves: Codimension one isometric immersions between Lorentz spaces. Trans.
Amer. Math. Soc. 252 (1979), 367-392. MR 80j:53060

T. Ikawa: On curves and submanifolds in an indefinite Riemannian manifold. Tsukuba
J. Math. 9 (1985), 353-371. MR 87d:53033

J. Inoguchi: Biharmonic curves in Minkowski 3-space. Int. J. Math. Math. Sci. (2003),
no. 21, 1365-1368. MR 2004e:53108

J. Inoguchi & S. Lee: Null curves in Minkowski 3-space. (Private communication), pp.
1-27, March, 2005.

D. H. Jin: Frenet Equations of Null Curves. J. Korea Soc. Math. Educ. Ser. B Pure
Appl. Math. 10 (2003), no. 2, 71-102. MR 2004c:53111

B. O'Neill: Semi-Riemannian Geometry. With Applications to Relativity. Pure and
Applied Mathematics, 103. Academic Press, Inc., New York, 1983. MR 85f£:53002

M. Spivak: A Comprehensive Introduction to Differential Geometry, Vol. 8. Publish
or Perish, Boston, Mass., 1975. MR 51#8962

DEPT. OF MATHEMATICS, DONGGUK UNIVERSITY, 707 SEOKJANG-DONG, GYEONGJU, GYEONGBUK
780-714, KOREA
Email address: jindhQdongguk.ac.kr



