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ON SPHERICALLY CONCAVE FUNCTIONS

SEONG-A Kim

ABSTRACT. The notions of spherically concave functions defined on a subregion
of the Riemann sphere P are introduced in different ways in Kim & Minda [ The
hyperbolic metric and spherically convex regions. J. Math. Kyoto Univ. 41 (2001),
297-314] and Kim & Sugawa [ Charaterizations of hyperbolically convex regions. J.
Math. Anal. Appl. 309 (2005), 37-51]. We show continuity of the concave function
defined in the latter and show that the two notions of the concavity are equivalent
for a function of class C?. Moreover, we find more characterizations for spherically
concave functions.

1. INTRODUCTION

Let C be the complex plane. We denote P for the Riemann sphere and consider
the spherical geometry for P. Let

|dw]

¥ eul? for we X. (%)

The metric given by (%) is the spherical metric on P when X = P and ¢ = 1,

Ax (w)ldw| =

and the hyperbolic metric on the unit disk D when X = D and € = —1. We call
2 C P is hyperbolic if its complement with respect to P has at least 3 points. For
a hyperbolic region 0 C P the hyperbolic metric Aq(w)|dw| is uniquely determined
from Aa(f(2))|f'(z)| = Ap(z) for all z € D, where f is any meromorphic covering
projection of the unit disk onto 2. Note that the density Aq is real analytic and
hence it is smooth. Also, the hyperbolic metric has constant Gaussian curvature —4
(¢f-Minda [4]) that is, —Alog A\ = —4)2.

Let X be either a hyperbolic region in P or P itself. The distance dx (A4, B)
between A and B in X measured by the metric Ax(w)|dw]| is given by

dx(A,B) = inf//\x(w)]dw|,
v
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where the infimum is taken over all paths v in X joining A and B. There exists an
arc ¢ joining the two points A and B such that dx (4, B) = [; Ax(w)|dw|. We call
such an arc § a geodesic arc joining A and B in X. A geodesic arc is the shorter
arc of the great circle joining two distinct points in PP in the case of X =P and the
part of the circular arc joining two distinct points in D which is perpendicular to the
boundary of D in the case of X = ). For example, the spherical distance between
two points A and B is

dp(A, B) = arctan

A-B
1+ AB ‘ '
Note that dp(A, B) < m/2 with equality if and only if A and B are antipodal.

We know that a real-valued function r defined on a plane region Q2 C C is called

(Euclidean) concave in 2 if the inequality
r((1 = t)wg + twy) > (1 = t)r(wp) + tr(w;)

holds for every t € [0,1] whenever the line segment [wg,w;] joining two points wq
and w; in € is contained in Q. Note that Q) need not be convex. In Kim & Minda [1],
it is shown that the reciprocal of the hyperbolic density of the hyperbolic metric on
) C C is (Euclidean) concave when 2 is (Euclidean) convex.

The spherical concavity of a real-valued function of class C? was first defined by
Kim & Minda [2]. They give some characterizations for the spherical concavity and
show that the reciprocal of the spherical density of the hyperbolic metric on  is
spherically concave on { if and only if a hyperbolic region £ C P is convex relative
to the spherical metric on €. Here, the spherical density of the hyperbolic metric on
Qis (14 |w|?)Aa(w) which is the ratio of the hyperbolic metric on €2 to the spherical
metric.

In this paper, we consider a geometric definition of spherical concavity which is
analogus to the Euclidean concavity. This definition is briefly mentioned as a remark
when characterizations for hyperbolically concave functions are established by Kim
& Sugawa [3]. The geometric definition is as follows; Let {) be a subregion of P. A
real-valued function r on  is said to be spherically concave if the inequality

r(wy) > sin(2(1 t)d)rs(it:?;d—;- sin(2td)r(w-) 1)
holds for each t € [0,1], where d = dp(wo,w1) and w; is the unique point in
such that dp(wg,w;) = td and that dp(w;, w1) = (1 — t)d, for wp, w; € €1, when-
ever the geodesic arc <y (relative to the spherical geometry) joining wo and w; with
dp(wg,wy) < m/2 lies entirely in . We remark that the point w; lies in -y necessarily.
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For brief notation, we will write w; = P,(wg,w;). Note that the above definition
does not require a real-valued function to be of class C? while the other definition
in Kim & Minda [2] does require.

In this paper, we show continuity of the spherically concave function defined
geometrically (see Theorem 1). In Theorem 2, we show that the composition of
spherically concave function with a certain function can be spherically concave.
Also, we show that the two definitions of spherical concavity mentioned above are
actually equivalent for a real valued function of class C? in Theorem 3. Moreover,
we find more equivalent conditions for spherically concave function. Our methods of
proofs of the Theorems 2 and 3 are analogous to the methods used for the hyperbolic

concavity in Kim & Sugawa [3].
2. THE INVARIANT DIFFERENTIAL OPERATORS
There are differential operators relative to spherical geometry which are called

spherical differential operators. We consider these differential operators for the re-
gion Q C P (cf Kim & Minda [2]): For a C? function r :  — R, we consider

1
as'f' = —/\;87',
1
dir = Vi [827' - 2(8;Ap)0r| = iz [82r — 2(81og Ap)or] ,
X2 2 _
1
As'f' = )\—%AT

Here, 0 and O are the partial differential operators and the Laplacian A = 488.
We recall that for w = u + iv in the complex plane,

g9 _1(0 .9
T 5w 2\9u v/’

5=—E)—=l(i+i£>.
ow 2\ du v
We note that 8?2 is not equal to 8,0, unlike the Euclidean case: 82 = 88. In
detail,
02 (w) = By(Byr(w)) + Ty (w)
A behavior of these operators was observed under an isometry of the spherical

metric or equivalently, a rotation of PP in Kim & Minda [2]. In particular, the quan-
tities |9,r|, |82r| and A,r are invariant under spherical isometries; For an isometry
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of the spherical metric, T(z) = €(z — a)/(1 + @z), we have
TI
Bs(r o T) = I_J—;’—l[(asr) o T],
T \?
3(roT) = () (@) oT

As(roT) = (Asr)oT.

3. MAIN RESULTS

First, we show a continuity of spherically concave function. In the proof of the
next theorem, set Dp(wp,d) = {w € P : dp{wp, w) < d} for a point wg € Q.

Theorem 1. Suppose that §) is a subregion of P. A spherically concave function

r: ) — R is continuous.

Proof. Let wy be an arbitrary point in 2. First we assume that r > —M in the neigh-
borhood V' = Dp(wy, dy) C 2, where M and dy are positive constants. Note that for
t € [0,1], Dp(wo, tdp) = {Ps(wp,w) : 0 < s < t,w € OV}. We take an arbitrary point
wy on OV and set wy = P;(wp, w;). Here, we may assume that 0 < dp(wp, w;) < 7/4.
By (1), for each ¢t where 0 <t < 1, we get the inequality
) = r(un) 2 (2220 1) 1) r(un) - Z22A0) )

In order to get an upper bound of [r(w;) —r(wp)], we choose a point w_; € 8V so
that wo is the spherical midpoint of w; and w_; in §. Since wy = Py /(144)(w-1, wy),
we obtain the inequality
sin(2tdo)r(w—-1) + sin(2dp)r(w:)

sin[2(1 + t)dg)

r(wg) >

by (1), and hence,

r(w;) — r{wp) < (-——-—-—Sln(si(ll(;l;)) do) _ 1) r(wo) + ——s:;(étz))) M. (3)

Both of the right-hand sides in (2) and (3) tend to 0 as ¢ — 0. Hence we have shown
that r is continuous at wy if it is locally bounded below.

On the other hand, the local lower boundedness of  can be easily shown. Indeed,

consider a compact spherical triangle 7" in €. Then, by (1), the function r is bounded
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below on each side of T. Applying (1) again, we can deduce that r is bounded below
on T Since 2 is covered by such triangles, the local lower boundedness follows. O

Remark. For a convex region {1 relative to spherical geometry, r(w) = 1/[(1 +
|w|?)Aq(w)] is spherically concave as mentioned in Introduction. This is the ratio of
the spherical metric to the hyperbolic metric on €.

Next, we show that the composition of spherically concave function with a certain

function can be spherically concave.

Theorem 2. Suppose that a concave and non-decreasing function g : (0,b) — R
satisfies that g(x)/xz is non-decreasing on (0,b) where b > 0. If a spherically concave
function r : Q@ C P — R takes its values in (0,b), then the composed function gor is

also spherically concave on €.

Proof. We need to show the inequality (1) for g or. First, we put
__sin(2(1 — t)d) + sin(2td) i s sin(2td)
€= sin(2d) AME 5= Snd - 0d) + sin(2td)’

Note that ¢ > 1. Now the spherical concavity of r gives

r(we) 2 c[(1 — s)r(wo) + sr(wi)).

By the condition that g(z)/z is non-decreasing on (0, b), g(cz) > cg(z) for z € (0,b).
This together with other conditions on g implies

9(r(we)) 2 g(c[(1 = s)r(wo) + sr(w1)))
2 cg([(1 = s)r(wo) + sr(w1)])
> c[(1 = s)g(r(wo)) + sg(r(w1))],

which is the desired inequality. |

Now, we give equivalent conditions for spherical concavity when r is of class C2.
First, we introduce a kind of minimum principle for solutions to a boundary value
problem for an ordinary differential equation. See Walter [5] for a proof of the
following result.

Lemma 1. Let u and v be real-valued functions of class C? on the interval [a, b]
and suppose that v < —4v and u” = —4u there. If u(a) = v(a) and u(b) = v(b),
then either v =u on [a,b] or v > u on (a,b).
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We establish characterizations of spherical concavity in the next theorem. Re-
member that we use geometric definition of spherical concavity here. In Kim &
Minda [2], r is called spherically concave if r satisfies the condition (iii) of the next

theorem.

Theorem 3. Let ) be a subregion of P and r be a real-valued function of class C?
on Q. Then the following are equivalent:

(i) 7 is spherically concave on Q.
(ii) Whenever the geodesic arc joining wo and w; in Q is contained in Q, the
midpoint m of it satisfies the inequality,
r(wo) + r(w1)
~ 2cos dp{wg, wy)

(4)

(iii) Whenever the geodesic arc w(s) parametrized by spherical arclength is contained

r(m)

in Q, the function v(s) = r(w(s)) satisfies the differential inequality v"(s) +
4v(s) < 0.
(iv) The inequality
62r(uw)| + 3857(w) + 2r(w) < 0 (5)
holds on 2.

Proof. (1)=-(ii): Just put ¢ = 1/2 in the inequality (1).
(ii)=>(iil): Let w(s) be a geodesic arc in ? parametrized by spherical arclength
and set s = sg. For wg = w(sp — J) and w; = w(sp + §), we obtain the inequality
v(sp — 6) + v(sp + 9)
v(s0) 2 2 cos(26)

by (4) or, equivalently,

-9 S d) — 2vu cos(26) — 1
v(sp — 0) + (5(2) + ) (so0) <2 0s( 52) v(s0)-

Letting 6 — 0, we obtain the inequality v”(sg) < —4v(sp).
(iii)=(i): Let wp,w; € § and suppose that the geodesic arc joining wy and

w; is contained in Q. Set w(s) = w,q = Pyjq(wo,w1) for s € [0,d], where
d = dp(wo,w;) and u(s) = [sin(2(d — s)) r(wo) + sin(2s) r(w1)] /sin(2d). Then
u satisfies the differential equation u” + 4u = 0 and the boundary conditions

u(0) = r(wo),u(d) = r(w;). Applying Lemma 1 to the function v(s) = r(w(s))
yields the inequality r(w,/q4) > u(s) for s € [0,d}, which is the same as (1).
(iii)«(iv): Kim & Minda [2] give a proof for this relation. O
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