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SOME NEW MEASURES OF FUZZY DIRECTED DIVERGENCE
AND THEIR GENERALIZATION

OM PARKASH AND P. K. SHARMA

ABSTRACT. There exist many measures of fuzzy directed divergence corresponding
to the existing probabilistic measures. Some new measures of fuzzy divergence
have been proposed which correspond to some well-known existing probabilistic
measures. The essential properties of the proposed measures have been developed
which contains many existing measures of fuzzy directed divergence.

1. INTRODUCTION

Zadeh [8, 9] introduced the concept of fuzzy sets in which imprecise knowledge can
be used to define a event. Dubois & Prade [2] defined the distance between two fuzzy
subsets on a fuzzy subset of R*. Their definition does not generalize the shortest
distance between two crisp sets. Rosenfeld [6] defined the shortest distance between
two fuzzy sets as a density function on the non-negative reals, which generalizes the
definition of shortest distance for crisp sets in a natural way. Using the concept of
fuzzy message conditioning, a fuzzy information measure for discrimination between
two fuzzy sets has been suggested by Bhandari & Pal [1]. -

Bhandari & Pal [1] introduced a measure of fuzzy divergence corresponding to
the probabilistic directed divergence of Kullback & Leibler [4] which is given by

B _Y WG W1 L= pa(z)
(A:B)=Y" [,uA(x,) 1np-2-(-z7) + (1 - palz:) 1nm2—(a], (1.1)

where pa(z;) gives the degree of belongingness of the element z; to the set A.

=1

The symmetric fuzzy divergence between two fuzzy sets A and B is given by

J(A:B)=I(A:B)+I(B:A). (1.2)
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Lin [5] introduced a probabilistic measure
n
p;
KP:Q)=)» pln-—"-—— 1.3

of directed divergence of a probability distribution P = (p1,p1,...,pn) from another
probability distribution @ = (1,492, .. ,q¢m)-
We propose fuzzy directed divergence corresponding to (1.3) as

K(A: B)

_ 2 In pa(zi)
2> pate W

— T; n-— - NA(‘T;)
+ (1 - pa(zi)) (1— pa(z) +1—-pp(x))/2]

The probabilistic measure of directed divergence of Sharma & Taneja [7] is given by

S(P:Q) = ;=5 [~ 4}’ (15)
i=1

(1.4)

wherea<l,>1lora>1,8<1.
We propose the measure of fuzzy directed divergence corresponding to (1.5) as

S(A: B)

T i 3 Z [“fl(wi)i“lB—a(xi) + (1= pa(@:)*(1 — pp(x:) '~

=1
— W@ g (@) — (1 - pa(@)’(1 - pe(@))' ] (1)

wherea<1l,8>1lora>1, 3<1.
In Section 2, we prove that (1.4) and (1.6) are valid measures of fuzzy directed
divergence. In Section 3, a new generalized measure of fuzzy directed divergence has

been developed and many more well-known measures have been derived from it.

2. NEw MEASURES OF Fuzzy DIVERGENCE

Taking
n n
Y ua(@)=s and Y pp(z:)=t,
i=1 i=1

where s and ¢ may be different from unity.
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We know that

Z M( 1) _Er_uﬂ__ it =
that is,
pa(z:) s
Z“A(ml (e + usE)2 = G0 (2.1)
Similarly,
Y . 1— pa(z:) ~ n—s
?::1(1—.“14(-'171)) 111(1 _ HA(xi) +1- MB(%‘))/Q > (TL S) lnm_ (2'2)

Adding (2.1) and (2.2), we get
K(A:B) = f(s),

where
n—sSs

f(S)ZSh’l m

(—S'+—t)7§+(n—5) In

Now
n —

72 I — s —
2n—s—t+ln(n s—1t)

f'(s)=Ins— 3_3—7 —In(s+t)—In(n—s) +

and

. 11 t 1 1 n—t

f (S)=<;_s+t)_ (s+t)2+(n-s—2n—s—t)— (2n — s —1)?
ot (n —t)?
T s(s+1)? + (n—3s)(2n—s—1t)?
>0,

so that f(s) is a convex function of s which has its minimum value when s = t, and
the minimum value is 0 so that f(s) > 0 and vanishes when s = t. Consequently,
K(A: B) is a convex function of pa(x;).
Similarly, we can show that K(A4 : B) is a convex function of ug(z;). Thus for

all values of s and ¢, we have

(i) K(A:B) >0,

(ii) K(A: B)=0if and only if A = B,
(iii) K(A : B) is a convex function, and
(iv) K(A : B) does not change when p4(z;) is changed to 1 — pa(x;) and pp(z;)

is changed to 1 — up(z;).
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Hence K(A : B) is a valid measure of fuzzy directed divergence and
J(A:B)=K(A:B)+ K(B: A)

1s a valid measure of fuzzy symmetric divergence.

Again, we know that

Z": [(}“Aixi))a(HBixi))l—a _ 1] >0

i=1

that is,

n
> uh (g *(m) > s
i=1
Similarly,

Y (1 - pa@)*(1 - pa(:)) 7 > (n - 8)*(n - )}

i=1
Adding (2.3) and (2.4), we get

n

D [ua@)pp (@) + (1 = pa())*( - pa(@:))' ]
=1
> s + (n — s)*(n —
Similarly,

n

Z (18 (@)l P () + (1 = pa(:)P(Q - pa(z:) 7]

> Pt P 4 (n— s)P(n -
Subtracting (2.6) from (2.5) and dividing by (a — §), we get
S(A: B) > F(s)

where

t)l-e,

t)1=~.

(2.5)

(2.6)

F(s) = E—i—ﬂ[satl_“ + (n— s)*(n — f)l_a - PP — (n - s)P(n — t)l‘ﬁ].

Now we have

o=t (- ()]

and

- s\2—2  ofla-— n—s\%?
P = g [ (2 et (2=)
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- O ()]

>0,

fora>1,f<lora<1, >1 Hence F(s) is a convex function of s whose

minimum value arises when
s n-—3s .
- = =1, ie, s=t
t n-—t

and the minimum value is 0, so that F(s) > 0 and vanishes only when s = ¢, i. e.,
when A = B. Consequently, S(A : B) is a convex function of pa(z;).
Similarly, S(A : B) is a convex function of ug(z;). Thus, for all values of s and
t, we have
(i) S(A:B) =0,
(i) S(A: B) =0 if and only if A = B,
(iif) S(A: B) is convex function, and
(iv) S(A : B) does not change when p4(z;) is replaced by 1 — pa(z;) and pg(z;)
by 1 - pp(z;).
Hence S(A : B) is a valid of measure of fuzzy directed divergence and S'(A : B) =
S(A: B)+S(B : A) is a valid measure of fuzzy symmetric divergence corresponding
to the measure defined by Havrda & Charvit [3].
If we take 8 =1 and a — 1, S(A : B) becomes the measure of fuzzy directed
divergence defined by Bhandari & Pal [1].

3. GENERALIZED Fuzzy DIRECTED DIVERGENCE

We consider

I)‘(A : B)
-3 | mata) + (1 = Vpa(e)o (5 24— ) -
+ {1 = pa@)) + (1= N - pp(@:)} x '
1 — pa(zi)
’ (/\(1 —pal@)) + (1 -1 - NB(-Ti)))j[ ’

where ¢(-) is twice differentiable convex function for which ¢(1) = 0. Now
OI\(A : B)
Opa(zi)
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_ NA(»’Cz')
- (Amm )
(1 - Nup(z:) ) < pa(z:) )
Apa(z) + (1 = A)us(zi) Apa(zi) + (1 = Npp(z;)
_ 1 — pa(zi)
A (A(l —pa(zi)) + (1 -2~ uB(wz‘))>

_ (1 =01 = ps(zi)) ( 1 — pa(zi) )
A1=pa(x:))+(1=A) (1= vpp(z:)) ~ \AML—pa(zi))+(1-A)(1—pp(z:))
and
82I,(A: B)
aﬂ?q(mi)
_ A(1 = XN)*(1 — pp(z:))? + (1 = N)2pg(z:)
M1 = pa(@)) + Q=N - pa@)]”  Pualz:) + (0 - Vus(:)]’
> 0,

so that I\(A : B) is a convex function of p4(z;) which has its minimum value when
pa(z;) = pp(zr;). And the minimum value is 0 so that Ix(A : B) > 0 and vanishes
when p4(z;) = pp(z;). Similarly, I (A : B) is a convex function of up(z;).
Thus for all values of pa(z;) and pp(z;), we have

(i) In(A: B) 20,

(ii) In(A: B) =0 if and only if A = B,
(iii) Ir(A : B) is a convex function, and

(iv) In(A : B) does not change when p4(z;) is replaced by 1 — pa(z;) and pp(z;)

by 1 — pp(zi)-

Hence I(A : B) is a valid generalized measure of fuzzy directed divergence.

3.1. Special Case I: Taking ¢(z) = zlnz and denoting I\(A : B) in (3.1) by
L 3(A: B), we get

Il’)‘(A . B)

_\ ) o pa(zs)
- i=1 [HA( o1 Apa(zi) + (1 = Npp(zi) (3.2)

1 — pa(zs)
A1 = pa(zi)) + (1 = (1 - pp(=:))

The expression (3.2) is a generalization of (1.4).

+ (1 - pa(z))In
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(a) If we take A =0 in (3.2), we get

n
pa(z;) 1 - pa(z:)
Lo(A:B)= zi)In ——= + (1 — pa(z;)) In ——————= 3.3
(4 B) = 3 [pae)n A + 0 25 63)
which is a measure of fuzzy directed divergence corresponding to the probabilistic
measure of divergence introduced by Kullback & Leibler [4]. ’

(b) If we take A = 3 in (3.2), we get

I,1(A:B)

1
2

& 5 pa(T:)
—g [“A( i)l Apa(z;) + ps(zi))/2

1— pa(z;)
(1 - pa(z:) +1 - pp(:))/2

+ (1 - pa(z;))In
which is (1.4).

3.2. Special Case II: Let ¢(z) = QL(Z—:%, a # 0, o # 1, and denote I(A : B) in
(3.1) by I z(A: B), then (3.1) gives

IQ,/\(A : B)

n

B WlZT) ; |3 uea(a) + (@ = Vs (e)) (3.4)

+ (1 = pa(@:)*{M1 = palz:)) + @ = N — paz)) o - 1],

(a) If we take A =0 in (3.4), we get

Io(A: B)
1

= 2D 2 WaE@s(@) T+ (1 - pa@) (1 - pa(@)' ™ - 1]
i=1

which is a measure of fuzzy directed divergence corresponding to the probabilistic
divergence defined by Havrda & Charviét [3].
(b) From (3.4), we have

liInl Iz,,\(A H B) = Il’,\(A 4 B)
o~

(c) When A =1 and & — 1, (3.4) becomes K (A : B).
(d) If we take A = 0, @ — 1 in (3.4), we get the measure of fuzzy directed divergence
defined by Bhandari & Pal [1].
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3.3. Special Case III: If we take ¢(z) = “’::zﬂ and denote I(4 : B) in (3.1) by
I3 A(A: B), we get
I ,\(A : B)

3 (k3@ uate) + (1 = Vup(a)} o0

i=1

Q

+ (1= pa@)* M - palz) + (1 = N - pp@)y— 9
— ph @) Malz) + (1 - Nps()}
= (1= pa@a))P AN = @) + (1= N(1 = pp (@)} ]

which is a generalization of (1.6).

(a) If we take A = 0 in (3.5), we get

13’0(/1 . B)

5 2 [ @ul (@) + (1 - pale) (1 = up(e)u @ ul (2

=1

Q

— (1~ pa(@:)’ (1~ pp(z:))' 7]
which of (1.6).
(b) If we take A =0 and 8 =1 in (3.5), we get

Io(As B) = —= 3~ [ (wush*(@:) + (1 = pua(0)*(1 - (i)~ - 1]
1

=
which is measure of fuzzy directed divergence corresponding to the probabilistic
directed divergence defined by Havrda & Charvat [3].
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