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CONVERGENCE OF GENERALIZED NETS AND FILTERS IN
GRADED L-FUZZY TOPOLOGICAL SPACES

K. K. MONDAL! AND S. K. SAMANTA®*

ABSTRACT. In this paper, an idea of graded fuzzy net is introduced; its convergence:
is studied; Relations between g-net and g-filter are established in L-fuzzy setting.

0. INTRODUCTION

In 1979 a theory of convergence of fuzzy filters was developed by Lowen [9] for lam-
inated spaces and afterwards it was extended to arbitrary fuzzy topological (Chang)
spaces by Warren (17]. In 1995 W. Gahler [6,7] introduced an idea of graded fuzzy
filter in lattice valued setting (which he called L-fuzzy filter) and studied its conver-
gence in Chang fuzzy topological spaces. Later on in the year of 1999 M. H. Burton,
M. Muraleetharan and J. Gutieirez Garcia [1, 2] considered another type of graded
fuzzy filter named as generalized filter (g-filter) by relaxing a condition imposed
by W. Gahlar [6,7]. In [12] we studied convergence of fuzzy filters and g-filters in
graded L-fuzzy topological spaces.

On the other hand, Pu Pao Ming and Liu Ying Ming [14] introduced the concept
of fuzzy net and studied its convergence in a Chang fuzzy topological space (CFTS).
In [15] Ramadan, El Deeb & Abdel-Sattar studied the convergence of a fuzzy net in
a smooth topological space using crisp points as well as fuzzy points.

In [11] we studied the graded convergence of a fuzzy net in a graded L-fts. In
this paper, our intention is to introduce such a generalized version of fuzzy net (we
shall call it a g-net) such that its associated fuzzy filter becomes a generalized fuzzy
filter.
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In fact this paper is a continuation of our previous papers [11,12] on fuzzy con-
vergence.

The organization of the paper is as follows:

In section 2, we study the characteristic property of limit sets of g-filters, (the
concept of which was introduced in [12]) in terms of g-neighborhoodness.

In section 3, we introduce a concept of generalized net (briefly called g-net) and
study its generalized convergence in a graded L-fuzzy topological space. Relation
of this g-net with corresponding g-filter has been established. Also characteristic
property of a gp-map in terms of g-nets has been studied.

1. NOTATION AND PRELIMINARIES

In this paper X denotes a non-empty set; unless otherwise mentioned, L denotes
a completely distributive order dense complete lattice with an order reversing invo-
lution 7 whereas Ly = L — {0}. Let 0 and 1 denote respectively the least and the
greatest elements of L; LX, the collection of all L-fuzzy subsets of X and Pt(LX),
the set of all L-fuzzy pts of X. M(L) denotes the set of all molecules of L whereas
M (LX) denotes the set of all molecule pts of LX. By 0 and 1 we denote the con-
stant L-fuzzy subsets of X taking values 0 and 1 respectively. For p, € Pt(LX } and
A, B e LX wesay pyqA if p, ¢ A° and AgB if A ¢ B°. For other notations we
follow {18].

Definition 1.1 ([16]). A function 7 : LX — L is called an L-fuzzy topology on X if
it satisfies the following conditions:

(01) 7(0) =7(1) =1

(02) 7(A1 A Ag) > T(A1) AT(Ag), for Ay, As € LX

(03) T( Viea Ai) > AieaT(4;) for any {Ai}iea C L¥.
The pair (X, 7) is called an L-fuzzy topological space and 7 is also called a gradation
of openness (GO) on X.

Definition 1.2 ([16]). A function F : LX — L is called an L-fuzzy co-topology of
X if it satisfies the following conditions :

(C1) : FO)=F(1) =1

(C2) : F(A;V As) > F(A)) AF(Ag), for Ay, Ay € L*

(C3) : -7:( Niea Ai) > NieaF(A;) forany {Ai}iea C LX.
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The pair (X,F) is called an L-fuzzy co-topological space and F is also called a
gradation of closedness (GC) on X.

Definition 1.3 ([11]). Let (X,7) be an L-fuzzy topological space and let @ :
Pt(LX) x LX — L be a mapping defined by Q(p,, A) = V{r(U); pyqU C A}. Then
Q is said to be a gradation of g-neighbourhoodness in (X, 7).

Proposition 1.4 ([11]). Let Q be a gradation of q—nez‘ghbourhoodnéss in an L-fuzzy

topological space (X,7). Then

(QN1)  Q(pz.1) = 1.Q(ps, 0) = 0 ¥ ps € PHLY),

(QN2) : Q(ps A) < Q(px B) if A,BelLX, ACB

(QN3) : Q(ps. AN B) = Q(ps, 4) A Q(ps, B) ¥ pr € M(LX) & A.B € L*.

(QN4) : Q(ps,A) £ k¥ = 3B, € LX st pgB, C A& A{Q(ry,Bp); 1y €
Pt(L*); r,qB,} £ k.

Proposition 1.5 ([11]). Let Q : Pt(L*) x LX — L be a mapping satisfying (QN1)
- (QN3) of Proposition 1.5. Let 7 : LX — L be defined by 7(A) = AN{Q(pz, A); p, €
M(LX) & prqA}. Then (X,7) forms an L-fuzzy topological space. If further the
condition (QN4) of Proposition 1.4 is satisfied by Q then the mapping Q : Pt(LX) x
LX — L defined by Q(ps, A) = V{T(U) ; p.qU C A} is identical with Q.

Proposition 1.6 ([11]). Let Q be a gradation of g-neighbourhoodness in an L-fuzzy
topological space (X,7) and 7 : LX — L be defined by 7(A) = ANQ(ps. A); ps €
M(LX) & pyqA} then 7 is an L-fuzzy topology on X and 7 = .

Definition 1.7 ([10]). Let (X,7) be an L-fuzzy topological space and e € Pt(L*).
The g-neighbourhood system of the fuzzy pt e w.r.t the Chang fuzzy topology 7,
denoted by Qr(e), is defined by Q,(e) = {U € LX; 3V € 7, satisfying eqV C U}.

Definition 1.8 ([11]). Let (X,7) be an L-fuzzy topological space and N : Pt(LX) x
LX — L be a mapping defined by N(p;,A) = V{7(U); p, € U C A}. Then N is
said to be a gradation of neighbourhoodness in (X, 7).
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Definition 1.9 ([11]). Let (X, 7) be an L-fuzzy topological space and e € Pt(LX).
The neighbourhood system of the fuzzy pt e w.r.t the Chang fuzzy topology 7,
denoted by N, (e), is defined by N,(e) = {U € LX; 3V € 7, satisfying e€ V C U}.

Definition 1.10 ([18]). Let L be a complete lattice. Define a relation * <<’ in L as
follows: Va,b€ Lia<<bifandonlyif VSCL, VS>b = 3s¢& S such that
s>a.Vae L, denote B(a)={be L;b<< a}, B%a)=M(8(a)).

Definition 1.11 ([12]). Let X be a non-empty crisp set. A fuzzy filter on LX is a
non-cmpty family G of L-fuzzy subsets of X such that
(i) 0¢g
(ii) G is closed under finite intersection.
(iii) if BEG& BC A then Ae G, VA, Be LX,

Definition 1.12 ([12]). Let (X, 7) be an L-fuzzy topological space G C L% be
a fuzzy filter on LX,e € Pt(LX). Then e is called a cluster point of G of upper
grade 1 and lower grade k , denoted by Goo'e and Gooye respectively if I’ = A{r €
Lo: UNA#0, VU €Qr(e)& AcG}and K =V{reLy: 3U € Q.(e), and
JA € G such that ANU = f)}. e is called a limit point of G of upper grade 1 and lower
grade k, denoted by G —! ¢ and G — e respectively, if I’ = A{r € Ly : Q,(e) C G}
and k¥ =V{re Ly: Q,(e) Z G}).

Definition 1.13 ([1]). Let G : L* — L be a mapping satisfying
(GF1) : G(0) =0; g(I) =1,

(GF2) : G(A1 A A2) > G(A1) AG(Az); V Ay, Ay € LY,

(GF3) : G(B)>G(A) if AC B; A,Be LX,
then G is said to be a generalised filter (g-filter) on L¥.

Definition 1.14 ([12]). Let G be a g-filter in an L-fuzzy topological space (X, 7) and
e € Pt(LX). Call e a limit pt of G, denoted by G — e if Q(e,U) < G(U) VU € LX,
where Q is the gradation of g-neighbourhoodness in (X,7). Denote the join of
all limit points of G by limG. Call e a cluster point of G, denoted by Gooe if
G(A) £ Qe,U) = ANU # 0, YV A, U € LX, where Q is the gradation of
g-neighbourhoodness on (X, 7). Denote the join of all cluster points of G by clug.

Definition 1.15 ([11]). Let (X,F) be an L-fuzzy co-topological space with F as
a GC on X. For each r € Ly and for each A € LX we define cl(4.7) = A{D €
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LX; ACD; DeF} where F, ={C¢€ LX ; F(C) > r}. cl is said to be L-fuzzy
closure operator in (X,F).

Proposition 1.16 ([11]). Let (X,F) be an L-fuzzy co-topological space with F as
a GC on X and let cl : L* x Ly — LX be the L-fuzzy closure operator in (X, F).
Then

(CO1) : el(0.7)=0; (I, r) =1V re L.

(CO2) : cl(A,r) 2 A, VA LX &V re Ly

(CO3) : cl(A,r) Cc(A,s) if r<s.

(CO4) : cl(A1V Az,r) = cl(A1,m) V(A1) , V€L
(CO5) : cz(cz(A,r),r) = cl(A,r), ¥ r € Lo.

(COB6) : Ifl=Vv{r e Ly ; cl(A,r) = A} then cl(A,]) = A.

Proposition 1.17 ([11)). A fuzzy point p, € cl(A,m) <= Y U € LX satisfying
pzqU AA , we have 7(U) 2 m.

Corollary 1.18 ([11]). p, € cl(A,m) <= 3 at least one U € Qu(p;) s.t
U 4A.

Proposition 1.19 ({11]). In an L-fuzzy topological space (X, T), p, € cl(A,m) <
VUE€T,, p:qU = UqA.

Definition 1.20 ([11]). Let (X, 7) be an L-fuzzy topological space and e € Pt(LX).
Let D be any directed set and S : D — Pt(LX) be any fuzzy net. For U € LX if
dme D st S(n)gU Yn > m holds then we say that SqU eventually; if for every
meDIneD st n>m and S(n)qU then we say SqU frequently. Call ‘e’
a cluster point of upper grade 1, denoted by Soo'e and of lower grade k, denoted
by Sooge, of a fuzzy net S : D — Pt(LX),if ' = A{r € Ly; YU € Q,(e), UgS
frequently} and ¥ =V{re Ly; 3V € Q.(e) st V 4S eventually } respectively.
Call ‘e’ a limit point of upper grade 1, denoted by S —! e and lower grade k,
denoted by S — e, of Sif I/ = AreLy; VU €Q,(e), UgS eventually } and
K=v{reLo;3VeQ.(e st V 45 frequently }.

Lemma 1.21 ([11]). Let (X,7) & (Y,6) be any two L-fts and let Q,Q be the
gradation of g-neighbourhoodness in (X,7) and (Y,8) respectively. A mapping f :
(X.7) — (,6) is gp iff Qle, F1(V)) > O(f(€). V),¥ e € M(LX) and V¥ V € LY.
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2. SoME RESULTS ON G-FILTERS AND Fuzzy FILTERS

In the paper ‘Fuzzy Convergence Theory -II’ we have given a definition of fuzzy
filters and g-filters. In the same paper we have studied some important results of
these two types of filters. Here we are going to study some more results keeping the

view on the results of g-net which wiii be discussed in the next section.

Proposition 2.1. Let G be a g-filter in an L-fts (X, 1), e € Pt(LX) and lim(G) =
V{p; € Pt(LX); G — p;} then eclim(G) <= G —e.

Proof. The implication G — e = e € lim(G) is obvious. So we are to prove the
converse part only.

Suppose there exists a fuzzy point e s.t e € lim(G) but G A e.

Then 3U € LX st GU) # Q(e,U)

= 3V elX st eqV CU and Q(f,V) £ G(U), ¥V fqgV, by (QN4)

= Q(f.V)LG(V), V fqV [since VCU = G(V)<G(U)

= G5 fV fqV.

This means if G — f for some f & Pt(LX) then f 4V ie fe Ve

so V{f € Pt(LX); G— fyCve

ie lim(G) C Ve

Hence e € lim(G) = ecV® = e 4V. a contradiction.

This completes the proof. O

Proposition 2.2. Let G be a g-filter in an L-fts (X, 7), e € Pt(L*) and clu(G) =
V{p, € Pt(L*); Goop,} then e € clu(G) <= Gooe.

Proof. We shall show only that e € clu(G) = Gooe because the reverse part is
straightforward.

If possible let e € clu(G) but G poe. Then 3 A,U € LX st G(A) £ Q'(e,U)
but ANU =0.

Now Q(e,U) £ G'(A) = 3V eLX st eqV CU and Q(f,V) £ G'(A), V fqV,
by (QN4) |

= GA)YLQ(f,V)V fqV but ANV =0

= G Aof Vf € Pt(LX) with fqV

So, if Goof for some f € Pt(LX)then f 4V ie feVe

Hence V{f € Pt(LX); Goof} C V¢ = clu(g) C Ve.
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So, ecclu(G) = ecV® = e 4V, a contradiction.
This completes the proof. O

Proposition 2.3. Let (X,7) be an L-fts, ‘cl’ be the closure operator in (X,7), A€
L* and e € M(LX). If 3 a fuzzy filter G not containing A s.t G —; e for some
lL<k €Ly then e€ cl(Ak).

Proof. Let the given condition be satisfied and if possible let e ¢ cl(A, k') then 3
at least one U € Qui(e) st U fA ie UC A® = A°€ Que) —(i).
Now G —je = I'=V{re Ly G2Q.(e)} # ¥

= Qu(e) C G — (ii).

From (i) and (ii) we can say A° € G, a contradiction.

Hence e € cl(A, k). O

Proposition 2.4. Let (X, 7) be an L-fts, ‘cl’ be the closure operator in (X,7). A€
LX and e € PYLX). If 3 a g-filter G on L* satisfying G(A°) # k but
G — e then ec cl(Ak).

Proof. G —e = G(U) > Q(e,U), VU € LX.

So in particular we have G(A®) > Q(e, A°).

So G(AY) 2k = Qle, A%) # k

= V{7(U); eqU C A} % k

= V{7 (U); eqU fA} 2 k

= T(U)? kYU e LX satisfying eqU 4A

= e € cl(Ak) |

Corollary 2.5. For any g-filter G in an L-fts (X,7) : im(G) C cl(A. k), if G(A®) #
k.

Proposition 2.6. Let ‘cl’ be the closure operator in an L-fts (X,7), e € Pt(L¥X)
and A€ LX. If ec cl(A,k)\A then 3 a g-filter G on LX and 3 f €
M(cl(A.k)\A) st G(A®) 2 k but G — f.

Proof. e € cl(A,k)

= VU € LX satisfying eqU 4A, 7(U) # k, by Proposition 1.18.
= 7(A°) 2k [as ed A = eqA® fA]

= Aremrx){Q(f, A°); fgA°} 2 k, by Proposition 1.7.
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= 3 fe€M(LX) st fqA° and Q(f, A # k
= f¢ A and Qs(A°) 2 k.
If we take G = Qy then G(A®) 2 k and obviously G — f.
Again Q(f,4%) ¥ k
= QUU) 2k VU e LX with fqU gA [as U A = U C A° = Q(f,U) <
QU,AY] = 1 € cl(A,k).
So, fe€ M{cl(A,k)\A). Hence the proof. g

Proposition 2.7. Let ‘cl’ be the closure operator in an L-fts (X.7) and A€ L*X.
If 3 ag-filteron L* st G(A) # k and G — fV f € %e), then e € cl(A,k).

Proof. G — f, ¥ f € 8(e)’

= GU)>Qf,U)Y feBd®e) and VU € LX. —————— (i)

If possible let e & cl(A,k) then 3 at least one V € LX st eqV fgA and
(V) > k.

Now e=V{f € 3%e)} and eqV = 3 f0¢€ fe) st flqV 4A.

So, fO%V C A° and T(V)>k = Q(f° A°) > k.

Therefore by (i), G(A°) > Q(f°, A°) >k, a contradiction.

Hence e € cl(A,k). O

Proposition 2.8. Let Q be the gradation of g-neighbourhoodness in an L-fts (X. 7).
Then for every e € M(LX), the mapping Q. : L*X — L, defined by Q.(U) =
Q(e,U), YU € LX, is a g-filter on LX and Q. — e.

The proof follows from the properties (QN1) - (QN3) of Q.

Proposition 2.9. Let (X, 7) be an L-fts with @ as the gradation of g-neighbourhoo-
dness, A be the collection of all g-filters on LX and lim(G) = V{p. € Pt(LX);G
— p, } where G € A. Then the following properties are satisfied by lim(G) :

(i) for every e M(LX), 3G € A st eclim(G),
(ii) for every e € M(LX) A{G(U); G € A; e € im(G)} > 0 = eqU, VU € LX,
(iii) if for some (e.U) € M(LX) x LX with eqU and for some H € A, H(U) ?
MGWU); GeA; eclim(G)} then 3V € LX st eqV CU and V f €
Pt(L*) with fqV, f & lim(H).
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Proof. (i) Since for every e € M(LX), Q. is a g-filler and Q. — e,then so
e € lim(Q,).

(i) Since e € lim(Q.), then A{G(U); G € A; e € lim(G)} > 0 = Q(U) >
0 = Qe,U) > 0= eqU.

(i) HU)Y 2 MGU); G € A; e € lim(G)}

= HU) 2 Q.(U) [since e € lim(Q,)]

= H{U) Z Q(e.U).

Then, by (QN4), 3V € LX st eqV CU and V fqV, Q(f,V) £ H(U)

= VY fqV, f & lim(H). O

Proposition 2.10. Let Ay be a collection of g-filters on LX and for every G €
Ao, lim(G) is a fuzzy subset of X satisfying

(i) for everye € M(LX), 3G € Ay s.t e€ lim(G),
() A{GU); G€ Ap; e€lim(G)} >0 = eqU,
(iii) of for some (e,U) € M(LX) x LX with eqU and for some H € Ag, H(U) #
MGWU); G € Ao, e € im(G)} then IV € LX st eqV C U and
V fqV, f & lim(H).
Then the mapping Q : Pt(LX) x LX — L, given by

Qe,U) = NG(U); G € Ag;e € lim(G)}

if e € M(LX) = V{Q(f,U); f € 8%e)} if e € PLLX)\M(LX), is a gradation of
g-neighbourhoodness on X.

Proof. Let e € M(LX) ; then by (i) the collection {G(U); G € Ag & e € lim(G)}
is non-empty, VU € LX. Also G(1) =1V G € Ag so A{GA); G € Ap & e €
lim(G)} = 1i.e Q(e,1) = 1. Similarly, G(0) =0, VG € Ay so Q(e,0) =0.

Next if e € Pt(LX)\M(LX). Then Q(e,1) = V{Q(f.1); f € 8%e)} =1 and
Qle,0) = V{Q1,0); 1 € B(e)} = 0.
So, (QN1) is verified.

(QN2) follows from (GF3).
Qe,UNV) = A{GUNV); GE Ag; e €lim(G)}
> MGWUYAG(V); G € Ag; e € lim(G)}
> [MGU): G € Ag; e lim(G)}) A NMG(V); G € Ag; e € lim(G)}]
=Q(e,U)AQ(e, V).
Also by (QN2), Q(e,UNV) < Q(e,U),Q(e, V)
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= Qe,UNV) < Q(e,U) AQ(e, V).
So, (QN3) is verified.
To verify (QN4) we shall prove first the following result:
V (e,U) € M(LX) x LX,
A{GU); G € Ap; e € lim(G)}
= V{MAMH(V); H e Ao; [ €lim(H)}; fe PYLX); fqV}; V e L¥; eqV C U}
— (A).
Case I. If e 4U then by (i) A{G(U); G € Ap; e € lim(G)} = 0.
Also e 4U implies 3 no V € LX s.t eqV C U,
so R.H.S of (A) becomes supremum over an empty collection hence it is zero.
ie LHS = R.HS.
Case IL: If eqU then for any V € L¥ satisfying eqV C U as we have H(V) <
H(U), VH € A
so, A{H(V): H € Ag; f € lim(H)} < AM{H(U); H € Ao; f € lim(H)}, V f €
Pt(LX)
= MAMH(V); He Ao; felim(H)}; fePLY); feV} < MGU); Ge Ao ec
lim(G)} [since eqV].
As this is true for all V € LX satisfying eqV C U , then
VIAMA{H(V); H € Ao; f € lim(H)}; fe PHLY); fqV} V € LY eqV C U} <
NMGU); G € Ag; e € lim(G)}.
If possible let L.H.S < R.H.S then
MAH(VY; H e Ag; f € PULX); f € lim(H)}; faV}
< MGW); G € Ag; e €lim(G)}; V V satisfying eqV C U
= 3 f0€e Pt(LX) st fO%V and
AMHV); H e Ap; fO € lim(H)} 2 A{G(U); G € Ag; e € lim(G)}
= IHg € Ay 5.t fO € lim(Ho); fOGV and Ho(V) 2 AMG(U): e € lim(G)}, VV €
LY with eqV C U.
In particular we have eqU C U so, Ho(U) 2 AM{G(U); G € Ag; e € lim(G)}.
Then by condition (iii), 3 W € LX st eqW C U and V f € Pt(L*) with
faW. f & lim(H,), which contradicts the existence of f0.
Hence A{G(U); G € Ay; e € lim(G)}
= V{ANAMH(V); H € Ap: f € lim(H)}; f € Pt(LX); fgV}; V € LX; eqV C U}
ie Qe,U) = V{A{Q(S,V); f e PLX); fqV}; V € L*; eqV CU}.
Now Q(e,U) £ k
= V{MQ(f,V); fe PHLX); fqV}; Ve LX; eqV CUY £k
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= JVO0e X st eqV® CU and A{Q(f,VO); f e PtLX); fqV°} £ k.

Hence (QN4) is verified for all e € M(LX).

If ec PtLX)\M(LX) then Q(e,U) £k = V{Q(f,U); fe )} Lk

= IVO0ecLX st fO%VOC U and A{Q(g,V®); g € Pt(LX) & gqV°} £ k

= JVOcILX st eqV® CU and A{Q(g,V?); g € Pt(LX) & gqV°} £ k.

Hence (QN4) is verified for all e € Pt(LX). O

Proposition 2.11. Let Q be a gradation of q-neighborhoodness on an L-fts (X.T)
and  be the collection of all g-nbd filters. Let Ay be a collection of g-filters on LX
containing 0 and satisfying the conditions (i)-(iii) of Proposition 2.10. Let lim(G) be
defined by lim(G) = V{p, € Pt(LX); G — p,} for every G € Ay. Then the mapping
Q : PtLX) x LX — L, defined by Q(e,U) = A{G(U); G € Ag; e € im(G)} if
e € M(LX) = V{Q(f.U); f € 8%e)} if e € PLX)\M(LY), is a gradation of
g-neighborhoodness on (X, 7) and Q = Q.

Proof. Since lim(G) is the join of all limit points of G, then it satisfies all the
properties of Proposition 2.9. Hence by Proposition 2.10, Q is a gradation of g-
neighborhoodness on (X, 7).

To show Q = Q we see that the neighborhood filter Q. — e, YV e € M(LX), SO
e € lim(Q.)

= MGU); G € Ag; e € lim(G)} < Q(U), Vec M(LX) &V U € L¥.

ie Qe,U) < Q(e,U), Vee M(LY).

If possible let Q(e®. U%) > Q(e®,U%) for some (e2,U°) € M(LX) x LX.

Then A{G(U®); G € Ag; €° € lim(G)} < Q(e°. U®)

= 3G € Ag st €0 €lim(Go) but Go(U®) # Q(e%, U°)

= €% € lim(Gy) but Gy / €%, contradictory to the Proposition 2.1.

So, Qe,U) = Q(e,U), Vee M(LX) and VU € L¥.

Next let e € Pt(LX)\M(L¥X) and if possible let Q(e,U) ¥ Q(e,U) for some
UeLX.

ie V{QU,U); 1€ 8} ¥ Qe,U)

= V{QU,U) f € B} ¥ Qle,U).

Then by (QN4) IV € LX st eqV CU and V g € Pt(LX) with gqV,

Q(9,V) £ V{Q(f.U); f € B%e)}

= Qg,V) ZV{Qf,V); f € 8%@e)}Vge PLY) with ggV —— (i)
Again eqV CU = IR € 8O0e) st A0V C U,
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so by (i) Q(R°,V) £ V{Q(f,V); f € 8(e)}

= Q(R%, V) £ Q(h°,V), a contradiction. So, Q(e,U) > Qe,U), YU € LX.
Again Q(e,U) = V{Q(S,U); f € B%(e)}

— V{QU,U); € B(e)} <Q(e,U). since f<eV fe ).

Then Q(e,U) = Q(e,U), V e € Pt(LX)\M(LX). O

3. GENERALIZED NET (G-NET)

In this section we introduce a concept of generalized net in fuzzy setting. This is
done by assigning a grade to each value of a fuzzy net. The definition is as follows:

Definition 8.1. Let D be any directed set. Any mapping s : D — Pt(L¥X) x L
given by s(n) = (e™,7™) V n € D is said to be a generalized fuzzy net (or g-net) if
Vm,leD,3keD st k>mvViand r* > rm A7l

In particular if we take r™ = 1, ¥n € D then the g-net reduces to a fuzzy net.

Definition 3.2. Let Q be the gradation of g-neighbourhoodness in an L-fts (X, 7).
A gnet s: D — Pt(LX) x L given by s(n) = (€*.7") is said to converge to a fuzzy
pt e, symbolically written as s — e if for every U € LX with Q(e,U) >0, 3me D
st ™ > Q(e,U) and e"qU V n > m. Denote the join of all limit points of s by
lim(s) i.e lim(s) = V{p, € Pt(L¥X); s — ps}

Definition 3.3. Let G : LX — Pr(L) be a prime valued g-filter and let D =
{(e,U) € M(L*) x L*;eqU & G(U) > 0}. If we define a relation ‘>’ on D by
(e,U) 2 (f,V) <= UCVV(e,U).(f,V)€ D, then ‘>’ directs the set D. Now
let 5(G) : D — M(LX) x L be given by s(G)(e,U) = (¢,G(U)). s(G) is said to be
the molecule g-net associated with G.

Lemma 3.4. Let X be a non-empty set and p, € Pt(LX),U € LX then p,qU =
Jke M(L) s.tk<p but kyqU.

Proof. pyqU = p € U¢(z). As M(L) is a join generating subset of L so 3 a subset S
of M(L)st VS =p=3ke Sstk<p butk LU%z) = k<p but k,qU. 0O

Proposition 3.5. Let G : LX — Pr(L) be a prime valued g- ﬁlter inan L fts (X, 7).
Then G —e <= s(G)—e.
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Proof. Let G — e then for any U € LX with Q(e,U) > 0, by lemma 3.4, 3 f €
M(LX)st fqU = (f,U) € D.Form = (f,U), r™ = G(U) and €™ = f, where
s(G)(m) = (e™,r™). Since G — e sor™ = G(U) > Q(e, U), where Q is the gradation
of g-neighbourhoodness in (X, 7).

Again V (g,V) € D with (9,V) > (f,U), s(G)(9,V) =(9.G(V)) and ggV

= gqU (since VCU )

So, s(G) —e.

Conversely, let s(G) — e and let U € LX be any fuzzy subset of X.

If Qe,U)=0 then G(U) > Q(e,U) holds trivially.

So, let Q(e,U) > 0. As s(G) — e so 3 (g9,40) € D st s(G)(g,A0) = (9,G6(A40))
with G(A4p) > Q(e,U). Then V (h,V) € D with (h.V) > (9.40), s(G)(h,V) =
(h.G(V)) and hqU.

Therefore for all hqAq as (h,Ag) > (9,40) so hqU = Ay CU

= G(U) =2 G(4p) = Q(e, V).

As UeL® is arbitrary so G — e. 0

Definition 3.6. Let Q be the gradation of g-neighbourhoodness in an L-fts (X. 7).
Agnet s: D — Pt(LX) x L given by s(n) = (¢™,") is said to have a cluster
pt e, symbolically written as soce , if for every U € LX with Q(e,U) > 0 and
VmeD with ™ £ Q'(e,U)In€ Dst n>m and e"qU. Denote the join of
all cluster points of s by clu(s) i.e clu(s) = V{p, € Pt(LX); soop;}.

Proposition 3.7. Let G : LX — Pr(L) be a prime valued g-filter in an L-fts (X, 7).
Then Gooce <+ s(G)oce.

Proof. Let Gooe. Let U € LX with Q(e,U) > 0 and (f.V) € D with
s(O)(£.V) = (£.6(V)) and G(V) £ Q'(e, V).

Since Gooe so UNV #0 = Jze X st (UNV)(z)>0 = (UnV)(z) <1

= Ipe M(L) st pLUnNV)(x) [since M(L) is a join generating subset of L]
> g (UNVE = paUnV).

Let g = p; then g € M(LX) and gq(UNV).

So, (9,V)€ D and (g,V) > (f,V) aswell as gqU.

Hence s(G)ooce.

Conversely, let s(G)ooe and let G(A) £ Q'(e,U) for some A,U € LX.

Then G(A) £ Q'(e,U) = G(A)#0 = A#0 = 3 fe M(LX) st fqA

= (f.A) € D and s(G)(f,A) = (f,6(A)).
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Let (f,A) =m then as s(G)ooe and r™ =G(A) £ Q'(e,U), so 3(g,V)ED st
(9, V) 2 (f,4) and gqU.

Again (9. V) > (f.A) = VC A

Further (g,V) € D = gqV = gqA [since V C A]

Thus g € M (LX), ggA and gqU so gg(ANU)

= ANU #0. Hence Goce. O

Proposition 3.8. Let s : D — M(LX) x L be a molecule g-net given by s(n) =
(e™, ") , then the mapping G(s) : LX — L defined by G(s)(U) = v{r"; s(m) =
(™, r™) & e"qU ¥ n > m} is a g-filter on LX. It is called the associated g-filter.

Proof. (i) G(s)(0) = sup of an empty subset of L =0

(i) Let U,V € LX. If e™ 4U or e" 4V frequently then correspondingly G(s)(U)
or G(s)(V)=0s0, G(s)(UNV)>G(s)(U)AG(s)(V) holds trivially.

So, let Im,l e D st €U Vn > m and e"gV Vn > 1 then obviously
G(s)(U) > r™ and G(s)(V) > r!. Now from the definition of g-net 3k € D s.t
k>mvI and r¢ > rmArk

Again Vn >k as e"qU, e"qV & e € M(LX) so e"qUNV)

= G)UNV)>rk>rmArl,

As L is completely distributive so G(s)(U V) > G(s)(U) AG(s)(V).

(iii) U2V = G(s)(U) > G(s)(V) is obvious from the definition of G(s). ]

Definition 3.9. Let s : D — M(LX) x L be a molecule g-net given by s(n) =
(e™,7™) then the mapping G(s) : LX — L defined by G(s)(U) = V{r™; s(m) =
(e™,r™) & e®qU ¥V n > m} is called the g-filter associated with the g-net s on LX.

Proposition 3.10. Let s be a molecule g-net in an L-fis (X,7) and e € Pt(LX).
Then s — e = G(s) — e where G(s) is the associated g-filier with the molecule

g-net s.

Proof. Let s : D — M(L*) x L be given by s(n) = (e®,7") and s — e and let
U c LX. To show G(s)(U) > Q(e,U).

If Q(e,U) =0 then obviously G(s)(U) > Q(e,U).

So, let Q(e,U) > 0thenass —e so 3me D st r™ > Q(e,U) and e"qgUVn >m
= G(s)(U) = Vv{r¥; s(k) = (e*,rF) & e"qU ¥V n > k} > Q(e,U).

As U € LX is arbitrary so G(s) — e. : ]
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- Now to show that the converse of the above proposition is not true always we

consider the following example.

Example 3.11. Let X be a non-empty set and 7:7 X I be given by

7(0) = 7(1) = 1& 7(A) = 0 for all other fuzzy subset A of X, where I = [0,1].
Then 7 is a gradation of openness on X.

Let s : N — Pt(IX) x I be given by s(n) = (15,1 — 1) for some fixed z € X,
where N is the set of all natural numbers.

Then Q(e,U) =0, VU e LX if U#1

and Q(e,1) =1, Ve € Pt(IX). Again if U € IX be such that U(z) > 0 then
G(s)(U) = V{rk; s(k) = (e*,r*) & e"qgU YV n > k} = Vpen{l - 2} = 1.

G(s)(U) =0 for all other U € IX.

So, G(s)(U) > Q(e,U) Y U € IX and for every e € Pt(IX).

So, G(s) — e for every e € Pi(IX).

On the contrary although Q(e,1) =1>0Vee€ Pt(I*) but 1-L 2 Qe,I)Vne
N. Hence s 4 e Vee Pt(IX).

Proposition 3.12 For any molecule g-net s in an L-fts (X,7) and e € Pt(L%X),
sooe = G(s)ooe where G(s) is the associated g-filter with the molecule g-net s.

Proof. We have G(s)(A) = v{r™; e"qA, ¥Yn > m} for any fuzzy subset A.

Let U.V € LX, such that G(s)(U) £ Q'(e, V)

then v{r™; e™qU, Vn >m} £ Q'(e,V)

= dmeD st M LQ(e.V) and e"qU, Yn > m.

Again as sooe so dnge D st ng>mand e™qgV.

So e"qV and e™qU and e™ ¢ M(LX)

= e™g(UNV)

= UNV#0

= G(s)oce. ' O

Proposition 3.13. Let s be.a g-net in an L-fts (X,7) and e, f € Pt(L*). Then

(i) s—e = soce.
(iiy s—e>f = s— f.
(iii) soce > f = socf.

The proof is straightforward.
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Definition 3.14. Let s : D — Pt(LX) x L be a g-net, given by s(n) = (e",‘r")'
and let E be any directed set then a g-net T : E — Pt(LX) x L is said to be a
g-subnet of s if 3 a mapping N: E— D st T(n)=s(N(n))VnekE.

Proposition 3.15. Let s: D — Pt(LX) x L given by s(n)= (e",7™) be a g-net
on LX. Then D; = {n € D; s(n) = (e",r™) & r™ >t} is a directed subset of D
forall te€ L if Dy is a non-empty subset of D.

Proof. Let m,n € D; then r™ r™ >t where s(m) = (e™,r™) and s(n) = (e",r").
So, from the definition of g-net 3 k€D st k>mvn& rk > ¢rm A P" >t where
s(k) = (e*,7%). So, k€ D; & k> mVn. Hence D, is a directed subset of D. [

Definition 3.16. Let s: D — Pt(LX) x L beagnet on LX andlet Dy={n¢
D; ™ >t where s(n) = (e",r®)}. Then D, is a directed subset of D provided
it is non-empty. We define a mapping s, : Dy — Pt(L*) given by si(n) = e if
s(n) = (e",7™) V¥ n € D;. Then s; is a fuzzy net on L%, s, is said to be the t-level
projection of s over Pt(LX).

Proposition 3.17. Let s: D — Pt(LX) x L be a g-net in an L-fts (X, 7). s, be
the t-level projection of s over Pt(LX) and e € Pt(LX). Thens — e = s —le
for some 1>t

Proof. As s—e so 3keD st r*>Q(e1) ie r¥F=1

= Dy={neD; s(n)=(e",r") &r* >t} #£¢pVte Lp.

Let U € Q;(e) then Q(e,U) > 0.

As s—e so 3me D suchthat Y >Q(e,U) >t & e™qUV n>m.

This means m € D; and s;(n)qU ¥V n € Dy with n > m.

Therefore s; —! e for some [ >t O

Proposition 3.18. Let s: D — Pt(LX) x L be a g-net in an L-fts (X,7), s; be
the t-level projection of s over Pt(LX) and e € Pt(LX). If for every t € Lo s; —; e

for some | £t then soce.

Proof. Given that for each t € Lo, s; —; e for some [ £ ¢
= I'=V{re Ly 3U € Q.(e); s, 4U frequently } ¥ t.
i.e for each t € Ly;

V{reLy 3dUE€ Q. (e); s; AU frequently } # t.

(¥)
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Now let V € LX be any fuzzy subset of X with Q(e,V) > 0 and ¢ € Ly be such
that t < Q(e, V). i.e t <V{a € Ly; V € Qq(e)}—— (ii)

Then from (i) and (ii) we get

V{r € Lo; 3U € Q(e); s, U frequently } # V{a € Ly; V € Qqle)} where
t<Qe. V).

= Jag €Ly st VEQule) and V{r € Ly; 3U € Q,(e); s; AU frequently
} 2 ao

= VU € Qu(e); siqU eventually.

= s5:qV eventually. ————— (iii)

Now let 7™ £ Q'(e, W) for some m € D and W ¢ LX.

Then Q(e, W) > 0. As s;gW eventually V¢ < Q(e, W)

so,3n€D stn>m and e"gW, where s(n) = (e™,r").

= soce. O

Definition 3.19. Let (X,7) and (v, d) be any two L-fts, f: X — Y be any
mapping and s: D — Pt(LX) x L, given by s(n) = (e?,7"), be a g-net on X. We
define the image g-net fO©s: D — Pt(LY) x L by f(s(n)) = (f(e"),r").

Proposition 3.20. Let (X,7) and (Y.8) be any two L-fts, f: X —Y bea
gp-map and s: D — Pt(LX)x L, given by s(n) = (e*, "), be a g-net on X. Then
s—e = fOs— fle) where e € M(LY).

Proof. Let @ and @ be the gradation of g-neighbourhoodness in (X,7) and
(Y,8) respectively. Let V € LY be such that Q(f(e),V) > 0. Then f(e)qV
and hence eqf !(V). Again as fis gp and e € M(L¥) so by Lemma 1.22
Qle, f7H(V)) 2 QUf(e),V) = Qle, f4(V)) >0,

Nowas s—e so 3meD st r™>Qle, f~HV)) and e*qf"YV),Vn>m
= " >Q(f(e),V) and f(e™)qV, Vn>m

= fOs— fle). ]

Proposition 3.21. Let (X,7) and (Y,d) be any two L-ftsand f: X —Y be
any mapping. If for any g-net s on X, s — p, = fOs— f(p) ¥V p, € M(LX)
then f is a gp-map.

Proof. Let Q and Q be the gradation of g-neighbourhoodness in (X,7) and (Y, )
respectively. As p; € M(LX) so the mapping Qp, : L* — L given by Q, (U) =
Q(p;,U) is a g-filter on LX and Qp. — Pz- So, by Proposition 3.5, the associated
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g-net s[Qp,] — ps.

Then according to the given condition f© s(Qp,] — f(ps)

Now s[@p,]: M(LX) x LX — LX x L is given by 8[Qp, | (ry, U) = (ry, Q(ps, U))
where r,qU.

Therefore  ® 5[Qp,](ry: U) = (£(r,), Qpa, V).

Again f ©s[Qp,] > f(pz) means VV €LY with Q(f(ps),V)>0, 3 (r),U°) €
M(L¥) % IX st Q(pa,U°%) > Q(f(p.),V) and f(t)qV ¥ (62, W) > (-0, U°) —
()

Now we shall prove that U° C f~1(V).

For, Vt, € Pt(LX) with t,qU® as t £ (U®)°(2) and M(L) is a join generating
subset of Lso 310 € M(L) st t>t0 £ (U%¢(2) = t, >t2qU° = (%, U% ¢
Dom(s|Qy,])- '

Again (2,U°%) > (r3,U% = f(t9)qV , by (i)

= t0f 1 (V) = t,qf}(V) and as this is true for all t, € Pt(LX) with t,qUP°.
So, U® C f~1(V).

Hence Q(p., f(V)) > Q(p, U°) 2 Q(f(p2), V)

So by Lemma 1.22 { is a gp-map. O

Proposition 3.22. Lei ‘cl’ be the closure operator in an L-fts (X,T), e € Pt(LX)
and A€ LX. If e€ M(cl(A,k)) for some k€ Ly then 3 a molecule g-net s in
A st s, —le for some 1> K.

Proof. Let e € M(cl(A, k)). Then by Proposition 1.20, for every U € Qy(e), UgA
i.e for every U € Qyle), 3z* € X st U(z®) £ A%(z*) = A(z¥) £ U(x®).

As M(L) is a join generating subset of Lso 3 p* € M(L) st A(z*) > p* L U(2¥)
= pl € M(LX), pbuqU and p% € A.

Since e € M(LX) , then Qk(e) is a directed set with respect to the relation ‘>’
definedby U>V <= UCV, YU,V e Qile).

So we define a molecule g-net s: Qx(e) — M(LX) x L by s(U) = (p%, Q(e, U)).
Then s is a molecule g-net in A.

Obviously Dy = Dom(sy) = {U € LX: s(U) = (p%., Q(e,U)) & Q(e,U) > k} =
Qir(e) and as gV YV V € Qile), so sy —' e for some I > k'. Hence the
proof. O
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Proposition 3.23. Let f € M(LX) and s[Qj] be the g-net associated with the
neighbourhood g-filter Q; and lim(s[Q;)) = V{p, € Pt(LX); s[Qs] — p.} then
e € lim(s[Qy]) < s[Qs] - e

Proof. s|Qs] — e = e € lim(s[Qy]) is obvious. So we are to prove the converse
part only.

Let e € lim(s[Qy]) and if possible let s[Qy] /4 e then Qf /> e, by Proposition 3.5.
= U e LX st QpU) ¥ Qe,U).

Then by (QN4), 3V € LX s.t eqV CU but Q(g,V) £ Qs(U)V g € Pt(LX) with
g9qV

= Q(9,U) £ Q;(U) ¥ g € PH{(LX) with gqV

= Q; / gV g€ Pt(LX) with ggV

= if Qf — g then g 4V ie geV®

= lim(Qy) C V¢ = lim(s|Qy]) C V¢

= e€ V¢ = e 4V, a contradiction.

Hence the proof. O

The above Proposition 3.23 is, hi)wever, not valid for arbitrary g-net S. This is
shown in the following Example:

Example 3.24. Let X be a non-empty crisp set and I be the unit closed inter-

val [0,1]. Let U, € IX be defined by U,(z) = 0.5 + —+: Yz € X and let

g" = (0.5 — ;ﬁ)g € Pt(I*), ¥n € N and for some fixed ¢ € X. Then obviously
g*qU; Yl < k, where k=1,2.3,...

Let 7:I%X — I be a gradation of openness defined by

T(Un) =05 — "12, ¥n €N and 7(0) = 7(1) = 1.

Let $: N — Pt(I*X) x I be defined by

, 0.1, 1 if n=1

§n) =(e"r") = { &).820?5 -5 if n=23,..
For k € N, consider the fuzzy point g¢*. Then for any U € IX with Q(¢*,U) >
0, €N st r'>Q(g*U) and e™qU, Vn >1.So, § — g* Vk € N and hence
g* € lim(S), Vk € N.
So, Vieng® = B¢ € lim(S).
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But S 4 5, because Q(5¢,.9) = Vyen(5— 715) =05 and Yme N, r™ =

1
0.5 - P < 0.5.

Proposition 3.25. Let (X,7) be an L-fts with Q as the gradation of q-neighbour-
hoodness, for every e € M(LX), let Q. : LX — L be given by Q.(U) =
Q(e,U), YU € LX. Let s[Qc] be the molecule g-net on LX associated with Q. and
let G[s[Q.]] be the g-filter on LX associated with s[Q.] then G[s[Qe]] = Qe V e &
M(LX).

Proof. As s[Qe] : M(LX) x LX — L is given by s[Qc}(f,V) = (f,Q(e,V)) so
Gls[QIIU) = V{Q(e,V); slQe)(f, V) = (£,Q(e, V) & gqU, ¥ (9. W) 2 (£, V)}.
Now let (f.V) € D be such that V (9, W) € D, (g,W) > (f,V) = gqU.

Then V h € Pt(LX) with hqV 3 1% € 3%(h) st APV so, (A%, V)€ D and
(RO, V) > (f,V) = hO%qU = hqU

= VCU

Therefore G[s[Q.]](U) < V{Q(e,V); V C U}

=V{V{T(W); egW CV}: V C U}

=V{r(W); eqW C U}

=Q(e, V).

G[s[Qc))(U) > Q(e,U). YU € LX is obvious. Hence G[s[Q.]] = Q. Ve € M(LX) O

Proposition 3.26. Let (X, 7) be an L-fis with Q as the gradation of g-neighbour-
hoodness, T be the collection of all molecule g-nets on LX and A be the collec-
tion of all g-filters associated with the members of I'. Let lim(Gls]) = V{p, €
Pt(LX); Gls] — p.} where s € T . Then the following properties are satisfied
by lim(G|s]) :
(i) fore € M(L*), I3s€l st eclim(G[s),
Gi) for e € M(LX), U e LX, /\{g[s](U); Gls] € A; e € lim(g[s])} >
0 = eqU,
(iii) if for some (e,U) € M(LX) x LX with eqU and for some H|[sp] € A
M[so)(U) /\{g[s](U); Gls|e A; e lim(g[s])} hold then 3V € LX st
eqV CU and V f € Pt(LX) with fqV. f & lim(H][so)).

Proof. (i) As by Proposition 2.8, Q. is a g-filter on LX and e € lim(Q.), V e €
Pt(L*) and by Proposition 3.25 G[s[Qe]] = Q.. V e € M(LX).
So, (i) follows.



CONVERGENCE OF GENERALIZED NETS AND FILTERS 67

(ii) /\{g[s](U); Gls| € A; ee lim(g[s])} >0
= GBIRW) >0 [os e € lim(Gls[Q.])]
= Q.(U) > 0. by Proposition 3.25.
= eqU.
(iii) For every e € M (LX),
Hlso)(©) 2 M{GIsI(V); Gls] € A e € lim(Gls])}

= Hisol(U) 2 GSIQN(V) [ as e € lim(Gls[Qe])]

= Hsol(U) Z Qe(U)

= Hso](U) Z Q(e, V).

Then by (QN4), 3V € LX st eqV CU and V f € Pt(L*) with fqV,

Q(f, V) £ Hlso](U).

= V fqV, f & lim(H[so)) 0O

Proposition 3.27. Let I' be the collection of all molecule g-nets on LX and A be
the collection of all g-filters on LX associated with the members of T'. If for every
s €T, lim(G[s]) is a fuzzy subset of X satisfying

(i) for everye € M(LX), 3s€T st ec€lim(G[s]),

(ii) /\{Q[s](U); Glsl € A; e € lim(g[s])} >0 = eqU, VU € LX and
Vee M(LX),

(i) if for some (e,U) € M(LX) x L* with eqU and for some H[so] € A,
Hiso)(U) 2 /\{g[s](U); Glsl € A; e € lim(g[s])} then 3V e LX st
eqV CU and V fqV, f & lim(H[so)).

Then the mapping Q : Pt(LX) x LX — L, given by

O(e,U) = /\{g[s](U); Gls| € A; ee lim(g[s])}, |

if ee M(LX) = v{Q(f,_U); fe ﬁﬂ(e)}, if e PtLX)\M(LX) is a gradation of
g-neighbourhoodness on X.

The proof follows from Proposition 2.10.

Proposition 3.28. Let Q be a gradation of g-neighbourhoodness on an L-fts (X, T),
T" be the collection of all molecule g-nets on LX and A be the collection of all g-filters
on L* associated with the members of T. Let lim(G[s]) is defined by lim(Gls]) =
V{p, € Pt(LX); G[s] — p,} for everys € T. ‘Then the mapping Q : PH{LX)x LX —
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L, defined by

Qle,U) = M{GIsI(U); Gls] € A; e € lim(Gls)},

if e€ M(LX) = V{Q(f, U), fe Bo(e)}, if e € PHLX)\M(LX) is a gradation of
g-neighbourhoodness on (X, 1) and Q = Q.

Proof. By Proposition 3.25, A contains the associated filters Q., ¥V e € M(L*), so

the proof follows from Proposition 2.11. O
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