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MATRIX SEMIRING

M. K. SEN* AND S. K. MAITY*

ABSTRACT. In [6], we have recently proved that an additive inverse semiring S is a
Clifford semifield if and only if S is a subdirect product of a field and a distributive
lattice. In this paper, we study the matrix semiring over a Clifford semifield.

1. INTRODUCTION

Recall that a semiring (S, +,-) is a type (2,2) algebra whose semigroup reducts
(S,+) and (S,-) are connected by distributivity, that is, a(b + ¢) = ab + ac and
(b + c)a = ba+ ca for all a,b,c € S. We call a semiring (S,+,-) an additive
inverse semiring if (S, +) is an additive inverse semigroup. Additive inverse semirings
were first studied by Karvellas [3] in 1974. In an additive inverse semiring (S, +,-),
Karvellas {3] proved the following theorem.

Theorem 1.1. Let S be an additive inverse semiring. Then for any a,b € S and
e € E*(S) we have (i) (a') = a, (ii) ab' = (ab)’ = a’b(iii) ab = o'V’ and (iv) € =e.

An ideal I of a semiring S is a k-ideal of S if a € I and either a+x € I or
T+ a € I for some z € S implies z € I. Also, an ideal I of a semiring S is called a
full ideal if E1(S) C I where E*(S) denote the set of all additive idempotents of S.

Definition 1.2 ([8]). A semiring (S, +, ) is called a completely regular semiring if
for every a € S there exists an element x € S such that
i) e+z+a=a,
(ii) a+ =2z +a and
(i) a(a+2)=a+=x

It was proved in [8] that the condition (ii7) can be replaced by the condition
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(i) (e +z)a=a+z.

Definition 1.3 ([7]). A completely regular semiring S is a Clifford semiring if S is
an additive inverse semiring such that E*(S) is a distributive sublattice of S as well
as a k-ideal of S.

According to M. P. Grillet [2], a semiring (S,+,-) is called a skew-ring if its
additive reduct (S, +) is a group.

By using the concept of skew-ring, we proved the following theorem in [7].

Theorem 1.4. A semiring S is a Clifford semiring if and only if S is a strong
distributive lattice of skew-rings.

By using Theorem 1.4, we see at once that if S is additive commutative then S
is a Clifford semiring if and only if S is strong distributive lattice of rings.

Definition 1.5 ([6]). Let S be a Clifford semiring with 1 such that 1 ¢ E*(S). A
non additive idempotent element a € S is said to be left invertible if there exists
an element r € S such that ra + 1+ 1’ = 1. In this case, r is called a left inverse
of a. Similarly, we can define right invertible element in a Clifford semiring. An
clement is said to be invertible if it is left invertible as well as right invertible. If a

is invertible, we say that a is a unit of S.

Definition 1.6 ([6]). A Clifford semiring S is called a Clifford semifield if the
following conditions are satisfied :

(i) 1 € S such that 1 ¢ E1(S), _
(i) S is both additive commutative and multiplicative commutative,

(iii) every non additive idempotent element of S is a unit.

Example 1.7. Let F be a field and D be a distributuve lattice with a greatest
element 1. Then F x D is a Clifford semifield.

Definition 1.8. A full ideal I of a semiring S is called a minimal full ideal of S if
there exists no ideal J of S such that E+(S)zJzI.

Throughout this paper, S denotes a Clifford semifield with 0 and 1 and we denote
an n X n matrix by A = [a1,...,a;,...,an], where a; is the i-th column of the matrix
A. Also, we write §; for the i-th column of I,, the identity matrix.

Many aspects of the theory of matrices and determinants over semirings have been
studied by Reutenauer and Straubing [4], Rutherford [5], Ghosh [1] and others. In



MATRIX SEMIRING 97

this paper, we study some properties of determinants of square matrices over Clifford
semifields with 0 and 1. Also, after introducing the concept of semi-invertibility of
square matrices over Clifford semifields with 0 and 1, we obtain the necessary and
sufficient condition for the semi-invertibility of square matrices. This paper ends
with an application in solving a system of simultaneous linear equations over a
Clifford semifield.

2. DETERMINANT OF SQUARE MATRICES

In this section, we study the determinant of a square matrix over a Clifford
semifields. Throughout this paper, M,,(S) denotes the set of all nxn square matrices
over S. It can be easily verified that M, (S) is an additive inverse semiring but may
not be a Clifford semiring.

Definition 2.1. A mapping D : M,(S) — S is said to be determinantal if it
satisfies the properties
(2.1) D[...,bj+¢;,...]=D[...,b;,...]+ D[...,c,.. .];
(2.2) D[...,Abs,...] =AD[...,b;...];
(2.3) Diay,...,a,...,a;,...,an] = (V)D(as,...,a5,...,8i,...,8a];
(2.4) D[by,...,6....,8;,...,60] =0;
(2.5) Dlay,...,a;-1,0,25,1,...,8,] = 0, where 0 denotes the column containing
only 0;
(2.6) D(I}) = 1 where I; is an n x n matrix with diagonal elements 1 and all
other elements are additive idempotents of S.

Theorem 2.2. If D is a mapping that satisfies properties (2.1) and (2.8), then it
satisfies the property (2.3) D(A) € E*(S) whenever A has two identical columns.

Proof. Taking a; = aj with i # j in (2.3), we obtain D(A) = (D(A))’. This leads to
2D(A) = D(A) + (D(A)). Since S is a Clifford semifield so that for 2-1 € S, there
exists an element r € S such that 2r + 1 + 1’ = 1. Now, 2D(4) = D(A) + (D(4))
implies 2rD(A) = rD(A) + r(D(A))'. This leads to
2rD(A) + D(A) + (D(A)Y = rD(A) + r(D(A)Y + D(A) + (D(A))’
= D(A) + (D(4)).
This implies D(A) = D(A) + (D(A))Y. Hence, D(A) € E*(S). O
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If A € M,(S) then we shall use the notation A;; to denote the (n —1) x (n — 1)
matrix that is obtained from A by deleting the i-th row and the j-th column of A

(i.e. the row and column containing a;;). Aj; is called the minor of a;; in A

The following result shows how we can construct a determinantal mapping on the
set of n X n matrices from a given determinantal mapping on the set of (n—1) x (n—1)

matrices.

Theorem 2.3 Forn > 1 let D : M,_1(S) — S be determinantal, and for k =
1,...,n define fi: Mp(S) — S by

fld) =" (1) auD(An).
=1

Then each fi, is determinantal.

Proof. It is clear that D(Ay;) is independent of the I-th column of A and so ay D(Ap)
depends linearly on the I-th column of A. Consequently, we see that fr depends
linearly on the columns of A, i.e., f; satisfies conditions (2.1) and (2.2) of the
definition of a determinantal mapping.

We now show that f} satisfies condition (2.3). Suppose that

A=lay,...,a,...,aj...,25]
and
B={bl,...,bi,...,bj,...,bn]:{al,...,aj,...,ai,...,an].

Then by; = ax; and by; = ax;. Now for | # i and | # j, Ap and By, are two
(n—1) x (n — 1) matrices in which two columns are interchanged and so, since D is

determinantal by hypothesis, we have
D(Ap) = (D(Bw))'.

Suppose, without loss of generality, that ¢ < j. Then it is clear that A; and Ag;
can be transformed into By; and By; by effecting (j — 1 —1) interchanges of adjacent
columns; so, by property (2.3),

D(Ay;) = ('Y ~17"D(By;)

and
D(Ag;) = (VY717 D(By)

Since ay; = by for all I # 4, j and by; = ay;, br; = ax;, we thus have
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fe(4) =Y (1) auD(4w)
1=1

= Y ()*auD(Aw) + 1) g D(Ak) + (V) ax; D(Akj)
1=l

= Z (1Y (1Yo D(Bri) + (1')E+(1')7 1~ by;D(Byy)
1=1;1%i,
+ (UV)*H (1)1, D(Bys)
n

= > ()FH)buD(Br) + (V'Y (1) D(Ary) + (1')*(1) b D(Br:)

I=1;1#4,5
= (1')( > @)y D(By) + ()b D(Agj) + (1I)k+ibkiD(Bki)>
1=1;1i,5
= (1)) (1"Y**'bD(Bu)
1=1
= (1) fu(B)
Hence fi([ay,...,a;,...,a,...,a,]) = (V) fi([a1,...,8j,...,ai,...,a5])

One can easily show that fy satisfies property (2.4) and (2.5).
Finally, fi satisfies property (2.6) since if A = I* then axx = 1 and ag; = e for
some e € E*(S) where k # [ and Agx = I}_, so that
felly) = Y**D(I5 1) + f ( wheref € E*(S)) = 1.
Consequently, it follows that fi is determinantal for every k. O

Corollary 2.4. For every positive integer n there is atleast one determinanial
mapping on M,(S).

Proof. We prove it by induction. The result is trivial for n = 1 and Theorem
2.3 shows how atleast one such mapping can be defined on M,(S) from a given
determinantal mapping on M,_,(S). ) . O
Definition 2.5. Let o be a pertutation on the set {1,2,...,n}. Define ¢, by

e = 1 if o is an even permutation
7 1 1 if o is an odd permutation

Then by condition (2.3) and Definition 2.5, we at once get

D[aﬂ(l): A5(2)s - -3 Qo(n) = esDlay, az, ... -)a'n]
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Proceeding as in the case of determinant over a field, we can prove the following

theorem.

Theorem 2.6. There is one and only one determinantal mapping D : M, (S) — S
and it can be described by

D(A) = Z €0lo(1),1 - - - Co(n),n-

ocESn,

An important consequence of the above result is that the expression for fi(A)

given in Theoremn 2.3 is independent of k.

Definition 2.7. The unique determinantal mapping on M, (S) will be denoted by
det. By the determinant of A = [aj|nxn We shall mean detA.

By Theorem 2.6, we see that detA = Z €585(1).1 - - - Ao (n),n-
0€Sn

n

Alternatively, by Theorem 2.3, we have detA = Z (1')i+j a;; detA;;, which will be
j=1

called the Laplace expansion along the i-th row. It is noteworthy that the Laplace

expansion is independent of the row chosen.
For a semiring S and a matrix A € M,(S), Reutenauer and Straubing [4] have
defined the positive determinant |A|* and negative determinant |A|~ as follows :

lA|+ = Z A5(1),1 - - - Qo (n).n and |A]” = Z As(1),1 - - - Ao (n),n-
cEA, oc€Sp\An

By the help of |4]" and |4~ we at once have

detA = )" €s501)1 - Go(m)m

o€Sn

= Z €285(1),1 - - Qg(n)n T Z €605(1),1 - - - o(n);n
0E€EAn UESn\An

= Z A5(1).1 - - - Ba(n)n + Z 110‘0(1),1 -~ Qg(n)n
oCAp oc€Sp\An

= Z Qs(1)1 -+ Co(n)n + (1’) Z As(1),1 - - - Bo(n),n
ocEAn Uesn\An

= (141" + @")(1417)

= (14" + (A7)

We can prove the followin.g theorem as in the case of determinant over a field.
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Theorem 2.8. For a square matriz A = [@;jlnxn, detA = detA’.

n
Corollary 2.9. (j=1,...,n) detA = Z (1) a;; detA;;.

i=1

Theorem 2.10. For a square matriz A = [aijlnxn, detlI+(I%) +A] = 14+1'+detA.
Proof. Let B = [bijlaxn = I} + (I) + A. Now, we have b = 1 + 1" + a;; and
bij = e;j + a;; for i # j, where e;; € ET(S). Then '

detB = Z Eﬂ'bu'(l),l N ba(n),n

o€Sy
=byy ... by + Z 6aba(l),l s ba(n),n
o€Sp\{id}
= ((1 + 1"+ au) s (1 + 1"+ a,m)) + Z 60-(60.(1),1

o€Sn\{id}
+ aa(l).l) s (ea(n),n + aa(n),n)

[where id denotes the identity permutation)]

=141+aj...ann +e+ Z €6G5(1)1 - - - Bo(n)n: fOT some e € E¥(S)

=1+ 1I + Z eaaa(l)'l -+ Qo(n)n
Uesn
=1+1"+detA
Therefore, det[I}; + (1) + A] = 1 + 1'+detA. 0O

Theorem 2.11. If A = [a;;] and B = [by;] are two n x n matrices over S then
det(AB) = (detA)(detB) + e for some e € ET(S).

Proof. If C = AB then the k-th column of C can be written cx = bygay +. ..+ bpran.
Moreover the i-th entry of cy is ¢;x = i ;b
Thus we have =
det(AB) = detC
= detlbpja; + ... + bpjan + ... + bipas + ... + bynan)

By using property (2.1) in the definition of the determinant we can write det(AB)
as a sum of the terms of the form

det[bo(l),laa(1)7 ----- ,ba(n)‘nao(n)]a
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where 1 < ¢(3) < n for every 4. Using property (7.1.2), we can express each of these

terms as ba(l),l e ,ba(n)’” det[aa(l), . ,a,,(n)].
However by (2.3)' each expression is in E*(S) except for those in which o (i) # o(j)
for i # j; i.e., those in which ¢ is a permutation on {1,...,n}. Thus we can deduce
that
det(AB) = det[bual + ...+ bgjan+...+ba1 +...+ b,man]
= (Z det[by(1),1805(1)s - - - - - - ,bo(n),naa(n)]) + e for some e € ET(S)
' oESn
= ( Z ba(l),l ...... ba(,,,),,,,det[a(,(l), . ,aa(n)]) +e
cESH
= ( Z bo(1),1 -+ ba(n),negdet[al, ceey an]> +e
oESn
= (detA)( Z €aba(1),1 ...... ba-(n)’n) + e
oESn

= (detA)(detB) + e.
Hence the result follows. ]
It is to be noted that we can also prove the above theorem by using Lemma 1
of [4]. The proof is as follows :
AB* = (|AI")(IBI*) + (AN (BI™) + 7
and
[AB|™ = (IAI")(IBI7) + (JAID)(BI) + 7
for some r € S.
det(AB) = (|AB|*) + (|AB|™)
= (|AM)(BI") + (A7) (IBI7) +r + (A B + (A (BIF) + 7Y
= ([A)(BIM) + ((AMUBI)) + (IATIBIT) + (A7) (BIT)Y +r
+ 7
= (A BI) + (1BI7)Y) + (JATWUBIT) + (IBI)) +r + 7
= (|A|")detB + (|A|")detB +r + 7'
= (detB)((JA]™) + (JA]7)) + e where e =r + 1’
= (detA)(detB) + e
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Corollary 2.12. For two matrices A, B € M, (S), det(AB) ¢ E*(S) if and only if
detA & E*(S) and detB ¢ E*(S).

3. SEMI-INVERTIBILITY OF SQUARE MATRICES

An n x n matrix A over a semiring S is said to be invertible if there exists an nxn
matrix B such that AB = BA = I,,. In this section, we define semi-invertibility of
a square matrix over a Clifford semifield S with 0 and 1 and obtain the necessary
and sufficient condition for semi-invertibility of square matrices over S. Throughout
this section, let E¥(M,(S)) be the set of all n x n matrices whose all entries are
additive idempotents and It (M,(S)) denote the set of all n x n matrices whose
(i.4)-th cntries are 1 and all other entries are additive idempotents. It can be easily
verified that E*(M,(S)) is a k-ideal of M,(S).

Definition 3.1. An n xn matrix A over S is said to be right semi-invertible if there
exists B € M,,(S) such that I + (It)' + AB = I}* for some I}, I;* € It (M, (S)).
Similarly, we can define left semi-invertiblity of a square matrix. A square matrix is
said to be semi-invertible if it is left semi-invertible as well as right semi-invertible.

From definition, it follows that if a matrix A € M,,(S) is invertible then it is
semi-invertible. But the converse may not be true. This follows from the following

example.

Example 3.2. Let D be a distributive lattice given by

D =¢ /7
\ )
Let S = (Q x {b,d}) U (R x {a,c}), where R and Q are the fields of real numbers

and rational numbers respectively. Then S is a Clifford semifield with (0,a) as its
zero element and (1,d) as its identity. Now, on S, we consider the matrix

=63 63)

We show that for the matrix A4 there is no matrix B € M(S) such that AB = BA =
I,. If possible
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there exist a matrix B =( Ei::)) EZ’)?; )E M;(S) such that AB = BA = I,

Then from AB = I we have immediately
( (z+3z,0) (y+3u,a) ) _ ( (1,d) (0,a) )
(2z + 5z,a) (2y+5u,a) /  \ (0,a) (1,d) /°
Comparing the corresponding entries, we have a = d, a contradiction. Thus,
there does not exit no such a matrix B € M3(S) such that AB = BA = I. Now

— (—5’0) (3,(1)
C= ( (2,(1,) (—l,a) > € AI2(S)

L+I+CA= ( %Z; g?gg ) - I

Thus A is clearly left semi-invertible. Similarly, we can show that A is right semi-

such that

invertible.

Theorem 3.3. If an n X n matriz A over S is right (left) semi-invertible then
detA ¢ E*+(8).

Proof. Since A is right semi-invertible, there exists an n x n matrix B such that I} +
(I}) + AB = I* for some I, I'* € I (M,(S)). This implies det(I} + (I})' + AB) =
det(I;*) = 1. Then by the above results and Theorem 2.10, we can easily deduce that
1+ 1'+det(AB) = 1. Again by Theorem 2.11, we have det(AB) =(detA)(detB)+e,
for some e € E*(S). Hence 1 + 1'+(detA)(detB) = 1. This leads to detA ¢

E*(S). 0

Theorem 3.4. If detA ¢ E*(S) for an nx n matriz A over S then A is right (left)

semi-invertible.

Proof. Let A = [a;j]nxn € My (S) be such that detA ¢ E*(S). Then there exists an
element r € S such that 1+ 1’ +rdetA = 1. Let B = [bjlnxn = [r(1)" 7 det Ay}t -
Let I} € I (M,(S)) and I} + (I}) + AB = C = [¢ijlnxn. Then
e =1+ 1+ Za.;jbji
j=1

n
=1+1+ Zaijr(l')i”detAij
Jj=1
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i3
=1+1+ T‘(Z (1')i+jaijdetAij)
i=1
=1+1 +rdetA

=1.

Again for i # j
cis = [l + (L) + ) aikbr;
k=1

n
=[xl + (IDi; + D aar (L) detAjy
=1
= [ + () + (3 (1) andetdyy)
j=1
= [I*];; + ([I2))}; + re (for some e € ET(S)) € ET(S).
nltj ¥

Hence I + (I3 + AB = I}* for some I}* € It (M,(S)). Consequently, A is right
(left) semi-invertible. O

Corollary 3.5. Ann xn matriz A over S is right (left) semi-invertible if and only
if detA € E*(S).

Lemma 3.6. Let I} € IT(M,(S)) and A € Mp(S). Then I} A= A+ O}, and
AL = A+ O3, for some Oy, Oy € E1(M,(S)).

Proof. Now I} = I, + O}, for some O}, € E*(My(S)). Hence AI; = A(Il, +
O3) = AL + A0}, = A+ O3, for some O}, € E+(Mn(S))-

Similarly, we can show that AI} = A + O for some O3 € ET(M,(S)). O

Theorem 3.7. For an n x n matriz A over S if I: + (I})' + AB = I;* for some
B € My(S) and I, I € I*(M,(S)) then I} + (I}}) + BA = I}** for some
I e I (M, (9)).

Proof. Now, I* + (I}) + AB = I* implies det{I}; + (I) + AB] = det(I;*). Then
by Theorem 2.10, it follows that 1 + 1’ + det(AB) = 1. Again applying Theorem
2.11, we have 1 + 1’ + det(A)det(B) = 1.4. This leads to detB ¢ E*(S). Hence
by Theorem 3.4, B is right semi-invertible. So there exists a matrix C € M,(S)
such that I*2 + (I*2) 4+ BC = I'3. Now I* + (IY + AB = I.}* implies B(I} +
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(I})'C + B(AB)C = B(I:*)C. This leads to BI:C + B(I})'C + BABC = BI:*C.
Then by Lemma 3.6, BC + (BC)' + O%, + BABC = O} + BC. This implies
X2+ (I3%) + BC + (BC) + O%. + BABC = O3 + I}* + (I}%)' + BC. This leads
to, I}3 + (I;3) + O%, + BABC = O3 + It* = I} where O3}, + I3 = I}*. This
implies I3 + (I;3) + O}, + BABC + BAIL2 + BA(I;?) = I;*+ BAIL;? + BA(1}?Y,
ie, I} + (I}3) + Ofy + BA(IY + (I;2) + BC) = I;* + BAL;? + BA(I;?)'. This
implies I}3 + (I}3) + O%y + BAL3 = It* + BAI}* + BA(I}?)". Then by Lemma
3.6, it follows that I3 + (I;3) + 0%, + BA+ 032, = I;*+ BAI;2 + BA(I}2). This
implies I3' + (I3') + BA = I}** where I} + (I}}) = I}3 + (I}3) + O}, + 032, and
I =I* + BAID* + BA(I%). Hence the theorem is complete. O

Corollary 3.8. An n x n matriz A over S is left semi-invertible if and only if it is

right semi-invertible.
Proof. Follows from Theorem 3.7.

Definition 3.9. For a matrix A € M, (S) if there exists a matrix B € M,(S) such
that I* + (I}) + AB = I'* for some I}, I** € I*t(M,(S)) then B is called a left
semi-inverse of the matrix A. Similarly, we can define the right semi-inverse of a

matrix over S.

By Theorem 3.7, we at once have B € M,(S) is a left semi-inverse of A € M,(S)
if and only if B is right semi-inverse of A. In this case, B is called a semi-inverse of
A

Similar to Clifford semifield, it is important to note that the semi-inverse of a
matrix A with detA ¢ E*(S) may not be unique. For this purpose we consider the

following example.

Example 3.10. We consider the Clifford semifield S in Example 3.2. On S, we

consider the matrix
((\/§=a) (L, (2,0 )
A=| (2v2.0) (-2,b) (-5,a) .
(l)a) (\/5’0) (_\/2—70')

Let
(g0 (o (ha
C=1] (-%,a) (—35,b) (%2, a)

(£,0) (4,0 (-%2,0)

Then I3 + I3 + CA = I5. Hence C is a left semi-inverse of A.
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Again, let
(2,0 (32,00 (-%.b)
Cl: (—%aa) (—%ad) (975510)
(%’b) (_ilgad) (—%5_270)
Then

(L-d) (O’b) (036) (_l’d) (O’b) (O,C)
( (0,a) (L.d) (0,b) ) + ( (0.a) (-1,d) (0,b) ) +C1A
(0.¢) (0.d) (L.d) 0,¢) (0,d) (-1,d)

(1,d) (0,d) (0,¢)
:((O,a) (1,d) <o,b>>ef+<Mn(S)>
(0,¢) (0,d) (1,d)

Thus, C; is also a semi-inverse of A. This shows that semi-inverse of a matrix over

a Clifford semifield is not unique.

Definition 3.11. For A € M, (S), the set of all semi-inverses are denoted by V(A)
and is defined by

V(A) = {B e Mu(S): I + (I*) + AB = I'* for some I*, I'* € I (M,n(S))}.

Theorem 3.12. Let A € M,(S) be such that detA ¢ E*(S). Then (V(A)) =
V(AY).
Proof. Let B € (V(A))t. Then B € V(A). So we have
I' + (ID) + AB' = I* for some I}, I'* € I (M,(S))
Le., (It + (I}) + ABY)! = (I
ie, It + (1YY + (ABY = I'? where (I')! = I} and (I*)t = I'?
ie, It + (1Y + BA* = 112
ie., I+ (I3 + A'B = I** for some I3, I** € It (M,(S)).
Hence we have B € V(A*) and thus (V(A))t C V(4%).
Again let B € V(4'). Then we have
IN+ (I}) + A'B = I for some I*, I'* € I (M,(S))

n: °n
ie. (I +(I) + A'B)t = (I;*)!
Le., It + (IYY + (A'B) = I'? where (IF)! = I'! and (I*)t = I*2
ie, It + (IMYY + BtA = I}

te., IM + (I®) + AB = I** for some I'3, I** € I't (M,(S)).
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This gives B € V(A). This leads to B € (V(A))!. Hence V(4% C (V(A)) .

Consequently, (V(A))! = V(A4Y). O

Theorem 3.13. Let A, B € M, (S) be two semi-invertible matrices. Then
V(B)V(A) C V(AB).

Proof. Let A* € V(A) and B* € V(B). Then there exist matrices I}, I}*, I}, I'% €
I (M,(S)) such that I} + (I) + A*A = I** and I} + (I3})' + B*B = I}?. Now we
can deduce that

L+ (I)+AA=1}

ie, B*(I; + (I}) + A*A)B = B*I;*B

ie, B*I:B+(B*I'B) + B*A*AB = B*I;*B

ic., 0, + B"A"AB = B*(I, + 0;,")B

[where 0%, = B*I'B + (B*I:B) € E*(M,(S)) and I}* = I, + 0} € I'* (M,(5)))

ie., 0; + B*A*AB = B*B + B*0,B

e, Y4+ (I 40, + B*A*AB=I'' + (I'') + BB+ B*0:*B

ie., (1*1 +0X) 4+ (It +0L) + B*A*AB = I'> + B*0}*B
(I*S)I + B* A*AB = 1*4

[where I'® = I*! 4 0% and I* = I:?> + B*0}*B]

Hence, B*A* € V(AB). Thus, V(B)V(4) C V(AB). O

ik 'n

APPLICATION

Problem 3.14. We consider the Clifford semifield S in Example 3.2. Solve the

following system of equations :
(V2,0)z + (1,c)y + (2,a)z = (3,0)
(2V2,a)z + (—2,b)y + (=5,a)z = (4,b)
(1,a)z + (V2,0)y + (—V2,0)2 = (8V/2,0)

where ¢, y, 2 € §.
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( (V2,0) (L&)  (2.0) ) ( z )
=| (2v2,a) (=2,b) (-5,0) , X=1| v
(1 a) (\/570) (_\/§a a’) z

( (3’ a) )
B = (47 b) s
(8v2,0)

where z = (xlka xD)) y= (ynu yD) and z = (zma ZD)‘
Then the given system of equations can be written as AX = B.

Solution. Let

and

Now,
detA = (V2.a)(TVZ,0) + (~1,¢)(L,0) + (2,0)(6.a)
= (14,a) + (-1.a) + (12,0a)
= (25,a) ¢ E*(S).

Hence, by Theorem 3.4, A is semi-invertible. Let
(32,0) (3.0)

25 ,a)
C=1| (-%,0) (—%.b 9%5,(1
(%’a) ("%7“) (_"ﬁ's_,a‘)
Now,

Li+I;+CA

=L+L+| (—ha) (A0 (2 || @29 (28 (=50
& a) (-—:135,(1) i (La) (V2 (—v2.a)

((1,d) (0, a) (O,a))
= (0,0,) (Ld) (O,G) =
(0,a) (0,a) (1,d)
This implies

(%2, 0) (25,@ (—%.0) ((ﬁ,a) (Le)  (2,0) )
a)

(I3 + L+ CAX = X
This leads to
X+X'+CAX =X
This implies
X+X' +CB=X.



110

Th

Th

Th

M. K. SEN* aND S. K. Marry**
is leads to
(0.2,) (V2,0) (7, 7,)
0,y5) + (5,0) = (y]R’yD)
(O’ZD) (—2,(1) (zma ZD)
is implies
(\/ﬁ)a_i—xD) (zx.2p)
(5,b+y1)) = (ymyu)
(—2,a+ 2,) (2. 2p)
is leads to

Ty = V2, Y =5, p==-2,a+z,=2,,b+y, =y, anda+ 2z, = z,.

Hence we have

xgz\/é,y3=5, 2p=—2,x,>0a, Yy, 2b, 2z, >a.
Thus,
T = (Ty, Tp) = {\/5} x {a,c}, ¥y = (Yp,¥yp) = {5} x {b,d}

and

z=(2z,2p) ={-2} x D.
Consequently, the set of solution of the given system of equations is

z = {V2} x {a,¢}, y = {5} x {b,d}, 2 ={-2} x D.
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