P(R, M) GAMMA NEAR-RINGS

YONG UK CHO*, T. TAMIZH CHELVAM** AND N. MEENAKUMARI***

ABSTRACT. In this paper, we introduce the concept of P(r,m) Γ - near-ring and obtain some characterization of P(r,m) Γ -near-rings through regularity conditions.

1. Introduction

Throughout this paper M stands for a Γ -near-ring. For basic definitions in near-ring theory one may refer to Pilz [3] and in Γ -near-ring one may refer to [4]. The concept of P(r,m) near-rings was introduced by Balakrishnan [1]. Now we introduce the concept of P(r,m) Γ -near-rings and obtain some characterization of the same through regularity conditions. Further we obtain some properties of P(1,2) and P(2,1) Γ -near-rings.

2. Preliminaries

A Γ -near-ring is a triple $(M, +, \Gamma)$ where

- (i) (M, +) is a group,
- (ii) Γ is a non-empty set of binary operations on M such that for each $\gamma \in \Gamma$, $(M, +, \gamma)$ is a right near-ring,
- (iii) $x\gamma(y\mu z) = (x\gamma y)\mu z$ for all $x, y, z \in M$ and $\gamma, \mu \in \Gamma$.

For $x \in M$ and a positive integer m, by x^m we mean $x\gamma_1x\gamma_2...x\gamma_{m-1}x$, where $\gamma_i \in \Gamma$ for $1 \le i \le m-1$. M is said to be a P(r,m) Γ -near-ring if there exist positive integers r, m such that $x^r\Gamma M = M\Gamma x^m$ for all $x \in M$. M is called a left unital Γ -near-ring (right unital Γ -near-ring) if $x \in x\Gamma M$ ($x \in M\Gamma x$) for all $x \in M$. M is said to be regular if for each $x \in M$, there exists $x \in M$ such that $x \in M$ such that $x \in M$ such that $x \in M$ for all $x \in M$.

Received by the editors January 4, 2006 and, in revised form, May 15, 2006.

^{*}Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. 16Y30.

Key words and phrases. gamma near-ring, regular gamma near-ring.

every pair of non-zero elements γ_1, γ_2 of Γ . A non-empty subset A of M is called left Γ -subgroup (right Γ -subgroup) of M if A is a subgroup of (M,+) and $M\Gamma A \subseteq A$ $(A\Gamma M \subseteq A)$.

M is said to fulfill the intertion of factors property (IFP) provided that for all $a,b\in M$, $a\gamma b=0$ for all $\gamma\in\Gamma$ implies $a\gamma_1n\gamma_2b=0$ for every pair of non-zero elements γ_1,γ_2 of Γ and for all $n\in M$. A Γ -near-ring M is said to be zero symmetric if $x\gamma 0=0$ for all $x\in M$ and $\gamma\in\Gamma$. A Γ -near-ring M is said to be sub-commutative if $x\gamma_1M=M\gamma_2x$ for all $x\in M$ and $\gamma_1,\gamma_2\in\Gamma$.

M is said to be left permutable or right permutable [2] according as $(x\gamma_1y)\gamma_2z$ = $(y\gamma_1x)\gamma_2z$ or $(x\gamma_1y)\gamma_2z = (x\gamma_1z)\gamma_2y$ for all $x,y,z \in M$ and for every pair of non-zero elements γ_1,γ_2 of Γ . For $A\subseteq M$, we define the radical \sqrt{A} of A to be $\{x\in M/x^k\in A \text{ for some positive integer }k\}$. A regular Γ -near-ring M is called P_3 regular if for each $a\in M$, $a\gamma b=b\gamma a$ for all $\gamma\in\Gamma$, where b is an element M satisfying the property $a=a\gamma_1b\gamma_2a$ for every pair of non-zero elements γ_1,γ_2 of Γ .

M is said to have strong IFP if for all ideals I of M and for all $a,b,n\in M, a\gamma b\in I$ for all $\gamma\in\Gamma$ implies $a\gamma_1n\gamma_2\in I$ for every pair of non-zero elements γ_1,γ_2 of Γ . M is said to be a generalized gamma-near-field (GGNF) if for each $a\in M$, there exists a unique $a'\in M$ such that $a\gamma_1a'\gamma_2a=a$ and $a'\gamma_1a\gamma_2a'=a'$ for every pair of non-zero elements γ_1,γ_2 of Γ [5]. It is easy to see that a P(r,m) Γ -near-ring is zero-symmetric. An element $a\in M$ is called idempotent if $a\gamma a=a$ for all $\gamma\in\Gamma$. E denotes the set of all idempotents in M. An element $a\in M$ is said to be nilpotent if $a^n=0$ for some positive integer n. Throughout this paper by M, we mean a zero-symmetric Γ -near-ring.

The following result in [5] is given for reference:

Theorem 1. The following are equivalent:

- (i) M is a GGNF.
- (ii) M is regular and each idempotent is central.
- (iii) M is regular and sub-commutative.

3. Basic Results

In this section we establish certain preliminary results for future use.

Proposition 1. If M is without non-zero nilpotent elements, then M is a IFP Γ -near-ring.

Proof. If $x\gamma y = 0$ for $x, y \in M$ and for all $\gamma \in \Gamma$, then $(y\gamma x)^2 = (y\gamma x)(y\gamma x) = y\gamma(x\gamma y)\gamma x = y\gamma 0 = 0$. This implies that $y\gamma x = 0$. Now, for $\gamma_1, \gamma_2 \in \Gamma, n \in M$, $(x\gamma_1n\gamma_2y)^2 = (x\gamma_1n\gamma_2y)\gamma(x\gamma_1n\gamma_2y) = x\gamma_1n\gamma_20\gamma_1(n\gamma_2y) = (x\gamma_1n)\gamma_20 = 0$. This implies that $x\gamma_1n\gamma_2y = 0$. Therefore M is an IFP Γ -near-ring.

Proposition 2. Let M be a P(1,2) Γ -near-ring.

- (i) If M has no non-zero nilpotent elements, then M is a right unital Γ -nearring.
- (ii) If M is a left unital Γ -near-ring, then M has no non-zero nilpotent elements.

Proof. (i) Since M is a P(1,2) Γ -near-ring, we have $x\Gamma M=M\Gamma x^2$ for all $x\in M$. Now $x^2=x\gamma x\in x\Gamma M=M\Gamma x^2$ which implies that $x^2=m\gamma x^2$ for some $m\in M$ and for all $\gamma\in\Gamma$. This implies $(x-m\gamma x)\gamma x=0$. Since M has no non-zero nilpotent elements and M is zero symmetric, $x\gamma(x-m\gamma x)=0$ and $m\gamma x\gamma(x-m\gamma x)=m\gamma 0=0$. Now $(x-m\gamma x)^2=(x-m\gamma x)\gamma(x-m\gamma x)=x\gamma(x-m\gamma x)-m\gamma x\gamma(x-m\gamma x)=0$. From this and M has no non-zero nilpotent elements, we get that $x-m\gamma x=0$ and so $x=m\gamma x\in M\Gamma x$. Thus M is a right unital Γ -near-ring.

(ii) For all $x \in M$, $x \in x\Gamma M = M\Gamma x^2$ for some $m \in M$ and for all $\gamma \in \Gamma$. Thus $x^2 = 0$ implies x = 0. Hence M has no non-zero nilpotent elements.

Similar to the above, one can prove the following result.

Proposition 3. Let M be a P(2,1) Γ -near-ring which is also right permutable.

- (i) If M has no non-zero nilpotent elements, then M is a left unital Γ -near-ring.
- (ii) If M is a right unital Γ -near-ring, then M has no non-zero nilpotent elements.

Proposition 4. Any homomorphic image of any P(r,m) Γ -near-ring is also a P(r,m) Γ -near-ring.

Proof. Let M be a P(r,m) Γ -near-ring and let $f: M \to M'$ be a Γ -near-ring epimorphism. Since M is a P(r,m) Γ -near-ring, $x^r\Gamma M = M\Gamma x^m$ for all $x \in M$. Now, for $y, z \in M'$ and $\gamma \in \Gamma$, consider $y^r\gamma z = f(x)^r\gamma f(m) = f(x^r\gamma m) = f(m'\gamma' x^m) = f(m')\gamma' f(x^m) \in M'\Gamma y^m$. Therefore $y^r\Gamma M' \subseteq M'\Gamma y^m$. Similarly one can prove the other inclusion and hence $y^r\Gamma M' = M'\Gamma y^m$.

Proposition 5. Every left Γ subgroup of a P(1,2) Γ -near-ring is also right Γ subgroup.

Proof. Let A be a left Γ subgroup of a P(1,2) Γ -near-ring M. For $a \in A$, $m \in M$, $\gamma \in \Gamma$, $a\gamma m \in a\Gamma M = M\Gamma a^2$ implies $a\gamma m = m'\gamma'a^2 \in M\Gamma a \subseteq M\Gamma A \subseteq A$ and so A is a right Γ -subgroup.

The following is an immediate corollary of the above result.

Corollary 1. Every left ideal of a P(1,2) Γ -near-ring is an ideal.

Proposition 6. If M is a P(1,2) or P(2,1) Γ -near-ring, then M has strong IFP.

Proof. Let I be an ideal and $a\gamma b \in I$ for $a,b \in M$ and $\gamma \in \Gamma$. (i) Suppose M is P(1,2) Γ -near-ring. Since M is zero-symmetric, $M\Gamma I \subseteq I$. Now $a\gamma_1 m \in a\Gamma M = M\Gamma a^2$ implies $a\gamma_1 m = m'\gamma a^2$ for some $m' \in M$ and for all $\gamma \in \Gamma$. This further implies that $a\gamma_1 m\gamma_2 b = (a\gamma_1 m)\gamma_2 b = (m'\gamma a^2)\gamma_2 b = (m'\gamma a)\gamma(a\gamma_2 b) \in M\Gamma I \subseteq I$. Hence $a\gamma_1 m\gamma_2 b \in I$. Thus M has strong IFP. (ii) Let M be a P(2,1) Γ -near-ring. Consider $m\gamma_2 b \in M\Gamma b = b^2\Gamma M$. From this we get that $m\gamma_2 b = b^2\gamma m'$ for some $m' \in M$ and for all $\gamma \in \Gamma$. Now $a\gamma_1 m\gamma_2 b = a\gamma_1 (m\gamma_2 b) = a\gamma_1 (b^2\gamma m') = (a\gamma_1 b)\gamma(b\gamma m') \subseteq I\Gamma M \subseteq I$. Hence M has strong IFP.

Proposition 7. If M is a P(r,m) Γ -near-ring for some positive integers r and m, then every idempotent is central.

Proof. Let M be a P(r,m) Γ -near-ring for some integers r and m. For $e \in E$, $e^r \Gamma M = M \Gamma e^m$ implies $e \Gamma M = M \Gamma e$. Now $e \Gamma M \Gamma e = e \Gamma (M \Gamma e) = e \Gamma M$. Hence $e \Gamma M = M \Gamma e = e \Gamma M \Gamma e$. For $m \in M$, there exists $u, v \in M$ such that $m \gamma_2 e = e \gamma_1 u \gamma_2 e$ and $e \gamma_1 m = e \gamma_1 v \gamma_2 e$. Now $e \gamma_1 m \gamma_2 e = e \gamma_1 (m \gamma_2 e) = e \gamma_1 (e \gamma_1 u \gamma_2 e) = e \gamma_1 u \gamma_2 e = m \gamma_2 e$ and $e \gamma_1 m \gamma_2 e = (e \gamma_1 m) \gamma_2 e = (e \gamma_1 v \gamma_2 e) \gamma_2 e = e \gamma_1 m$. Thus $e \gamma_1 m = e \gamma_1 m \gamma_2 e = m \gamma_2 e$ for all $m \in M$. Therefore every idempotent is central.

Proposition 8. (i) Let M be a P(1,2) Γ -near-ring. Then M is regular if and only if M is a right unital Γ -near-ring.

(ii) Let M be a P(2,1) Γ -near-ring which is right permutable. Then M is regular if and only if M is a left unital Γ -near-ring.

Proof. (i) Assume that M is a P(1,2) Γ -near-ring and regular. For all $x \in M$, there exists $y \in M$ such that $x = x\gamma_1y\gamma_2x \in x\Gamma M$. Therefore M is a right unital Γ -near-ring. Conversely, let M be a right unital Γ -near-ring. For each $x \in M$, $x \in x\Gamma M = M\Gamma x^2$. From this we get that $x = m\gamma_2x^2$ for some $m \in M$ and for all $\gamma_2 \in \Gamma$ and so $x^2 = x\gamma_1m\gamma_2x^2$. This further implies that $(x - x\gamma_1m\gamma_2x)\gamma_1x = 0$.

From this we get that $x\gamma_1(x-x\gamma_1m\gamma_2x)=0$ and $x\gamma_1m\gamma_2x\gamma_1(x-x\gamma_1m\gamma_2x)=0$. Consider $(x-x\gamma_1m\gamma_2x)^2=(x-x\gamma_1m\gamma_2x)\gamma_1(x-x\gamma_1m\gamma_2x)=x\gamma_1(x-x\gamma_1m\gamma_2x)-x\gamma_1m\gamma_2x\gamma_1(x-x\gamma_1m\gamma_2x)=0$. Since M has no non-zero nilpotent elements, we get that $x-x\gamma_1m\gamma_2x=0$. Hence $x=x\gamma_1m\gamma_2x$. i.e., M is regular. (ii) Let M be regular. Then, for each $x\in M$, there exists $y\in M$ such that $x=x\gamma_1y\gamma_2x\in M\Gamma x$. Therefore M is a left unital Γ -near-ring. Conversely let M be a P(2,1) left unital Γ -near-ring, which is also right permutable. Then $x\in M\Gamma x=x^2\Gamma M$ which implies that $x=x^2\gamma_2m$ for some $m\in M$ and for all $\gamma_2\in G$. Thus $x^2=x^2\gamma_2m\gamma_2x=x\gamma_1x\gamma_2(m\gamma_2x)=x\gamma_1(m\gamma_2x)\gamma_2x$ (since M is of right permutable), which implies that $(x-x\gamma_1m\gamma_2x)\gamma_2x=0$. From this we get that $x\gamma_2(x-\gamma_1m\gamma_2x)=0$ and $x\gamma_1m\gamma_2x\gamma_2(x-x\gamma_1m\gamma_2x)=0$. Consider $(x-x\gamma_1m\gamma_2x)^2=(x-x\gamma_1m\gamma_2x)\gamma_2(x-x\gamma_1m\gamma_2x)=0$ and so $x=x\gamma_1m\gamma_2x$. Thus M is regular.

Proposition 9. Let M be a right unital P(1,2) Γ -near-ring. Then M is P_3 regular.

Proof. By Proposition 8, M is regular. Thus, for $x \in M$, we have $x = x\gamma_1 m\gamma_2 x$ for some $m \in M$. Hence $x\gamma_1 m\gamma_2 x = (m\gamma_1 x^2)\gamma_1 m\gamma_2 x = (m\gamma_1 x)\gamma_2 (x\gamma_1 m\gamma_2 x) = m\gamma_1 x\gamma_2 x = m\gamma_1 x^2$, which implies that $x\gamma_2 (x\gamma_1 m - m\gamma_1 x) = 0$ and $x\gamma_1 m\gamma_2 (x\gamma_1 m - m\gamma_1 x) = 0$ for all $m \in M$. Consider $(x\gamma_1 m - m\gamma_1 x)^2 = (x\gamma_1 m - m\gamma_1 x)\gamma_2 (x\gamma_1 m - m\gamma_1 x) = x\gamma_1 m\gamma_2 (x\gamma_1 m - m\gamma_1 x) - m\gamma_1 x\gamma_2 (x\gamma_1 m - m\gamma_1 x) = 0$ which implies that $x\gamma_1 m = m\gamma_1 x$ for all $\gamma_1 \in \Gamma$. Hence M is P_3 regular.

4. Generalized Gamma Near-Fields

In this section, we obtain equivalent for a Γ -near-ring to be a generalized gamma near-field.

Theorem 2. Let M be a regular Γ -near-ring. Then the following statements are equivalent:

- (i) M is a P(1,2) Γ -near-ring.
- (ii) Every idempotent in M is central.
- (iii) M is a GGNF.
- (iv) M is a P(2,1) Γ -near-ring.

Proof. (i) ⇒(ii) Follows from Proposition 7
(ii)⇒(iii) Follows from Theorem 3.1[5]

(iii) \Rightarrow (iv) By Theorem 3.1 [5], every idempotent is central. For $a \in M$, $a^2\gamma_1 m \in a^2\Gamma M$ for all $m \in M$. Now

$$\begin{split} a^2\gamma_1 m &= (a\gamma_2 a)\gamma_1 m = a^2 (a\gamma_1 b\gamma_2 a)\gamma_1 m \\ &= a^2\gamma_1 ((b\gamma_2 a)\gamma_1 m) = a^2\gamma_1 m\gamma_1 (b\gamma_2 a) \in M\Gamma a. \end{split}$$

Therefore $a^2\Gamma M \subseteq M\Gamma a$. For $m\gamma_1 a \in M\Gamma a$,

$$m\gamma_1 a = m\gamma_1(a\gamma_1 b\gamma_2 a) = (a\gamma_1 b)\gamma_1 m\gamma_2 a = (a\gamma_1 b\gamma_2 a)\gamma_1(b\gamma_1 m\gamma_2 a)$$
$$= a\gamma_2(a\gamma_1 b)\gamma_1(b\gamma_1 m\gamma_2 a) = a^2\gamma_1(b^2\gamma_1 m\gamma_2 a) \in a^2\Gamma M.$$

Therefore $M\Gamma a = a^2\Gamma M$.

 $(iv) \Rightarrow (ii)$ Follows from Proposition 7.

(ii)
$$\Rightarrow$$
 (i) Proof is similar to that of (iii) \Rightarrow (iv).

Theorem 3. Let M be a regular Γ -near-ring. Then M is a P(r,m) Γ -near-ring for all positive integers r and m if and only if M is a P(1,2) Γ -near-ring.

Proof. Let M be a P(1,2) Γ -near-ring. By Theorem 2, every idempotent is central. Let r and m be any two positive integers. Let $a \in x^r \Gamma M$. Then $a = x^r \gamma m$ for some $m \in M$ and for all $\gamma \in \Gamma$. Now

$$a = x^r \gamma_2 m = (x \gamma_1 y \gamma_2 x)^r \gamma_2 m = x^r \gamma_1 (y \gamma_2 x)^r \gamma_2 m$$

= $x^r \gamma_1 (y \gamma_2 x) \gamma_2 m = x^r \gamma_1 m \gamma_2 (y \gamma_2 x) = x^r \gamma_1 m \gamma_2 (y \gamma_2 x) m$
= $x^r \gamma_1 m \gamma_2 y m \gamma_2 x^m = (x^r \gamma_1 m \gamma_2 y m) \gamma_2 x m \in M \Gamma x^m$.

Therefore $x^r\Gamma M \subseteq M\Gamma x^m$. Similarly we can prove that $M\Gamma x^m \subseteq x^r\Gamma M$. Therefore M is a P(r, m) Γ -near-ring. Converse is trivial.

Theorem 4. If M is a left permutable as well as a right permutable regular Γ -near-ring, then it is a P(r,m) Γ -near-ring for all positive integers r and m.

Proof. By Theorem 3, it is enough to show that M is a P(1,2) Γ -near-ring. Let M be regular. For $a \in M$, there exists $b \in M$ such that $a = a\gamma_1b\gamma_2a$. Now $a\gamma_1m = (a\gamma_1b\gamma_2a)\gamma_1m = (b\gamma_1a\gamma_2a)\gamma_1m$. Since M is left permutable, $a\gamma_1m = (b\gamma_1a\gamma_2a)\gamma_1m = b\gamma_1m\gamma_1a^2$. By M is right permutable, $a\gamma_1m \in M\Gamma a^2$. Therefore $a\Gamma M \subseteq M\Gamma a^2$. Conversely, $m\gamma_2a^2 = m\gamma_2(a\gamma_1b\gamma_2a)\gamma_2a = (m\gamma_2a\gamma_1b)\gamma_2a^2 = (a\gamma_2m\gamma_1b)\gamma_2a^2 = a\gamma_2(m\gamma_1b\gamma_2a^2) \in a\Gamma M$. Therefore $M\Gamma a^2 \subseteq a\Gamma M$. Thus $a\Gamma M = M\Gamma a^2$ for all $a \in M$. Hence M is a P(1,2) Γ -near-ring and the result follows. \square

Theorem 5. Let M be a regular P(r,m) Γ -near-ring. For two left Γ -subgroups A and B of M, the following are true.

- (i) $\sqrt{A} = A$.
- (ii) $A \cap B = A\Gamma B$.
- (iii) $A^2 = A\Gamma A = A$.
- (iv) If $A \subseteq B$, then $A\Gamma B = A$.
- (v) $A \cap M\Gamma B = A\Gamma B$.
- Proof. (i) Let $x \in \sqrt{A}$. Then there exists some positive integer k such that $x^k \in A$. Since M is an right unital P(1,2) Γ -near-ring, by Theorem 4 and Proposition 6, $x \in x\Gamma M = M\Gamma x^2$ which further implies that $x = m\gamma x^2$ for some $m \in M$ and for all $\gamma \in \Gamma$. This gives that $x = m\gamma x^2 = (m\gamma x)\gamma x = (m\gamma m\gamma x^2)\gamma x = m^2\gamma x^3 = \dots = m^{k-1}\gamma x^k \in M\Gamma A \subseteq A$. Therefore $\sqrt{A} = A$.
- (ii) By Theorem 4 and Proposition 5, both A and B are right Γ -subgroups and therefore $A\Gamma B\subseteq A\cap B$. Let $x\in A\cap B, x=x\gamma_1y\gamma_2x\in (A\Gamma M)\Gamma B\subseteq A\Gamma B$. Thus $A\cap B=A\Gamma B$.
- (iii) Taking $B = A, A = A\Gamma A = A^2$.
- (iv) Follows from (ii).
- (v) $A \cap M\Gamma B \subseteq A \cap B = A\Gamma B$. Therefore $A \cap (M\Gamma B) \subseteq A\Gamma B$ and $A\Gamma B \subseteq M\Gamma B$. Therefore $A\Gamma B = A \cap (M\Gamma B)$.

REFERENCES

- 1. R. Balakrishnan: Ph. D dissertation. Manonmaniam Sundaranar University, India (1999).
- 2. G. Birkenmeier & H. Heartherly: Left Self Distributive near-rings, J. Austrial. Math. Soc. (Series A) 49 (1990), 273-296.
- 3. G. Pilz: Near-rings, North Holland, Amsterdam 1983.
- 4. Bh. Satyanarayana: Ph. D dissertation. Nagarjuna University, India (1984).
- 5. T. Tamizh Chelvam & N. Meenakumari: On generalized gamma near-fields. Bull. Malaysian Math. Sc. Soc. (Second Series) 25 (2002), 23-29.

*Department of Mathematics Education, College of Education, Silla University, Pusan 617-736, Korea

Email address: yucho@silla.ac.kr

**Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tanil Nadu, India

Email address: tamche_59@yahoo.co.in

***DEPARTMENT OF MATHEMATICS, A.P.C. MAHALAXMI COLLEGE FOR WOMEN, THOOTHUKUDI 628 002, TAMIL NADU, INDIA