ON GENERALIZATION OF COVARIANCE AND VARIANCE

C.-S. LIN

Dedicated to Professor Ka-Ying Lim on his retirement

ABSTRACT. We introduce the notion of the generalized covariance and variance for bounded linear operators on a Hilbert space, and prove that the generalized covariance-variance inequality holds. It turns out that the inequality is a useful formula in the study of inequality involving linear operators in Hilbert spaces.

1. DEFINITION AND INTRODUCTION

Let H be a Hilbert space over the field C of complex numbers. Let B(H) be the algebra of all bounded linear operators on H into itself; I denotes the identity operator, O the zero operator, and T^* the adjoint of $T \in B(H)$. The next definition was partially mentioned in our paper [8] without proof nor applications. Thus, the present paper is a continuation of [8].

Definition 1.1. For $S, T, R \in B(H)$ let S, T and R be acting on x, y and z, respectively for every $x, y, z \in H$. The generalized covariance for S, T and R on H is defined by

$$Ecov_R(S,T) = ||Rz||^2 (Sx,Ty) - (Sx,Rz)(Rz,Ty),$$

where the symbol (\cdot, \cdot) means the usual inner product in H. The generalized variance for S and R on H is a real number defined by

$$Evar_R(S) = Ecov_R(S, S) = ||Rz||^2 ||Sx||^2 - |(Sx, Rz)|^2$$
.

Recall in particular that the covariance for S and T on H, and the variance for

Received by the editors May 5, 2006 and, in revised form, May 27, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A63, 47A10.

Key words and phrases. Cauchy-Schwarz inequality, covariance-variance inequality, extended covariance-variance inequality, Ostrowski inequality, Bernstein inequality, Reid's inequality, Furuta inequality, Heinz inequality, Heinz-Kato-Furuta inequality, Löwner-Heinz inequality.

S on H, respectively, are defined in [7] as follows:

$$Cov_z(S,T) = ||z||^2 (Sx,Tx) - (Sx,z)(z,Tx),$$

and

$$Var_z(S) = Cov_z(S, S) = ||z||^2 ||Sx||^2 - |(Sx, z)|^2$$
.

The covariance and variance for operators on H were extensively studied in [7,8] with applications in inequalities involving linear operators in H. In this paper we first prove that the generalized covariance-variance inequality hold. The inequality is used to create and to prove inequalities in H. Consequently, it turns out that many well-known inequalities in the literature follow easily as special cases; and related and improved inequalities are given. We show that $Ecov_R(\cdot, \cdot)$ is indeed a semi-inner product in B(H); and relationships between this and the usual inner product (\cdot, \cdot) in H are explained in the last section.

2. Basic Results and Generalized Covariance-Variance Inequality

In this section we present basic results about the generalized covariance and variance; we prove that the generalized covariance-variance inequality holds true and the equality condition is given. Let $Re \ \alpha$ denote the real part of $\alpha \in C$.

Lemma 2.1. For $S,T,R,Q \in B(H)$ let S,T,R and Q be acting on x,y,z and w, respectively for every $x,y,z,w \in H$. Then the following relations hold.

- $(2.1) Ecov_R(S,S) = Evar_R(S) \ge 0.$
- (2.2) $Ecov_R(S, S) = Evar_R(S) = 0$ if and only if Rz and Sx are proportional.
- $(2.3) \ Ecov_R(Q \pm S, T) = Ecov_R(Q, T) \pm Ecov_R(S, T).$
- (2.4) $Ecov_R(\lambda S, T) = \lambda Ecov_R(S, T)$ for any $\lambda \in C$.
- (2.5) $\overline{Ecov_R(T,S)} = Ecov_R(S,T).$
- $(2.6) \ Evar_R(Q\pm S) = Evar_R(Q) + Evar_R(S) \pm 2Re \ Ecov_R(Q,S).$
- $(2.7) \mid Ecov_R(S,T) \mid^2 \leq Evar_R(S)Evar_R(T).$

(We shall call (2.7) the generalized covariance-variance inequality, the g-c-v inequality in short).

Moreover, if $Evar_R(S) \neq 0 \neq Evar_R(T)$, then the g-c-v equality holds if and only if Rz and $Sx - \lambda Ty$ are proportional, $\lambda \in C$.

Proof. (2.1) and (2.2) are due to Definition 1 and the Cauchy-Schwarz inequality and equality; and (2.3), (2.4), (2.5) and (2.6) are also by Definition 1. We see that conditions (2.1), (2.3), (2.4) and (2.5) constitute a semi-inner product $\text{Ecov}_R(\ ,\)$ in B(H) (it is not necessarily an inner product, since from (2.2) it does not have to follow that S=O). It follows that the Cauchy-Schwarz inequality holds in B(H), which is precisely the g-c-v inequality (2.7). Neverthless, for the sake of completeness let us prove it directly as follows.

If $Evar_R(S) = 0$, then Rz and Sx are proportional by (2.2), and hence

$$Ecov_R(S,T)=0.$$

Similarly for the case $Evar_R(T) = 0$. Assume $Evar_R(S) \neq 0 \neq Evar_R(T)$ and write $u = Evar_R(T) > 0$ and $v = Ecov_R(S, T)$, then, by (2.3), (2.4) and (2.5),

$$0 \le \frac{1}{u}Ecov_{R}(uS - vT, uS - vT)$$

$$= uEvar_{R}(S) - |v|^{2} - |v|^{2} + |v|^{2}$$

$$= uEvar_{R}(S) - |v|^{2}$$

$$= Evar_{R}(T)Evar_{R}(S) - |Ecov_{R}(S, T)|^{2},$$

and this proves the g-c-v inequality. It follows by above that the g-c-v equality holds if and only if $Ecov_R(uS - vT, uS - vT) = 0$, if and only if Rz and uSx - vTy are proportional by (2.2), and the proof is completed.

Now, firstly we require a special operator: For $w \in H$ let $P_w \in B(H)$ be defined by $P_w(x) = (x, w)w$ for every $x \in H$. In particular, $P_e(e) = e$. Secondly observe that for every nonzero vector $x \in H$ there exists a unit vector orthogonal to x. For example, for any nonzero vectors $y, w \in H$ let $e = \frac{w}{\|w\|}$ with $w = y - \frac{(y,x)x}{\|x\|^2}$. The next result is an application of the g-c-v inequality, which will be used in section five.

Corollary 2.2. For a unit vector $e \in H$ and $S, T, R, P_e \in B(H)$ let S, T, R and P_e be acting on x, y, z and e, respectively for every $x, y, z \in H$. Then

$$|Ecov_R(S,T) - Ecov_R(S,P_e)Ecov_R(P_e,T)|^2$$

$$\leq |Evar_R(S) - |Ecov_R(S,P_e)|^2||Evar_R(T) - |Ecov_R(P_e,T)|^2|$$

if $\operatorname{Evar}_R(P_e) = 1$. The equality holds if and only if Rz and $Sx + \alpha Ty - \beta e$ are proportional, $\alpha, \beta \in C$.

Proof. Let $u = Ecov_R(S, P_e)$ and $v = Ecov_R(T, P_e)$, and note that $Evar_R(uP_e) = |u|^2$ and $Evar_R(vP_e) = |v|^2$.

Then

$$\begin{split} &|Ecov_R(S,T)-Ecov_R(S,P_e)Ecov_R(P_e,T)|^2\\ &=|Ecov_R(S,T)-u\overline{v}|^2\\ &=|Ecov_R(S-uP_e,vP_e-T)|^2\\ &\leq Evar_R(S-uP_e)Evar_R(vP_e-T) \text{ by the g-c-v inequality}\\ &=[Evar_R(S)-|u|^2][Evar_R(T)-|v|^2] \text{ by (2.6) of Lemma 2.1,} \end{split}$$

and the required inequality follows. The equality holds if and only if Rz and $Sx - ue - \lambda(ve - Ty)$ are proportional by (2.2) in Lemma 2.1, $u, v, \lambda \in C$, which is the given condition.

3. Inequalities by Generalized Covariance and Variance

Before proceeding further about inequalities in H, we require some notations and their propperties. Let $A, B, T, U \in B(H)$. If A is a positive operator, we write $A \geq O$. If A and B are selfadjoint, we write $A \geq B$ when $A - B \geq O$. Let $T = U \mid T \mid$ be the polar decomposition of T with U the partial isometry, and $\mid T \mid$ the positive square root of the positive operator T^*T . A basic well-known property about the polar decomposition of T is that the equality $\mid T^* \mid^c = U \mid T \mid^c U^*$ holds for any c > 0, and $U^*U = I$ [4, p. 752]; this formula will also be used frequently in the next two sections. We recall that a complex number $\gamma \neq 0$ is a normal eigenvalue for T if both relations $Tx = \gamma x$ and $T^*x = \overline{\gamma} x$ hold associated with the same eigenvector $x \neq 0$.

In the next result the proof of each inequality is nothing but expanding and simplifying a suitable g-c-v inequality, which is easy and a straightforward process. This shows the usefulness of the g-c-v inequality and simplicity in the proof of inequalities in H.

Theorem 3.1. Let $S,T,R,U \in B(H)$. Then the following inequalities hold for every $x,y,z,e \in H$ with ||e||=1.

$$(3.1) \mid \parallel Rz \parallel^{2} (Sx, Ty) - (Sx, Rz)(Rz, Ty) \mid^{2}$$

$$\leq [\parallel Rz \parallel^{2} \parallel Sx \parallel^{2} - \mid (Sx, Rz) \mid^{2}][\parallel Rz \parallel^{2} \parallel Ty \parallel^{2} - \mid (Ty, Rz) \mid^{2}].$$

The equality holds if and only if Rz and $Sx - \lambda Ty$ are proportional, $\lambda \in C$.

$$(3.2) \mid \parallel Rz \parallel^{2} ((S - \gamma I)x, Ty) - ((S - \gamma I)x, Rz)(Rz, Ty) \mid^{2}$$

$$\leq [\parallel Rz \parallel^{2} \parallel (S - \gamma I)x \parallel^{2} - |((S - \gamma I)x, Rz) \mid^{2}][\parallel Rz \parallel^{2} \parallel Ty \parallel^{2}$$

$$- |(Ty, Rz) \mid^{2}]$$

for $\gamma \in C$ and $Sx \neq \gamma x$. The equality holds if and only if Rz and $(S - \gamma I)x - \lambda Ty$ are proportional. $\lambda \in C$.

(3.3) Let $r, s \ge 0$, $\alpha, \beta \in (0,1]$ with $\alpha(1+2r) + \beta(1+2s) \ge 1$, and $T = U \mid T \mid$ the polar decomposition. Then

$$\begin{split} &||||T|^{\alpha(1+2r)} z ||^{2} (T |T|^{\alpha(1+2r)+\beta(1+2s)-1} x, y) \\ &- (|T|^{2\alpha(1+2r)} x, z)(z, |T|^{\alpha(1+2r)+\beta(1+2s)} U^{*}y) ||^{2} \\ &\leq [|||T|^{\alpha(1+2r)} z ||^{2} |||T|^{\alpha(1+2r)} x ||^{2} - |(|T|^{2\alpha(1+2r)} x, z) ||^{2}] \\ &\cdot [|||T|^{\alpha(1+2r)} z ||^{2} |||T^{*}|^{\beta(1+2s)} y ||^{2} - |(z, |T|^{\alpha(1+2r)+\beta(1+2s)} U^{*}y) ||^{2}]. \end{split}$$

The equality holds if and only if $U \mid T \mid^{\alpha(1+2r)} z$ and $U \mid T \mid^{\alpha(1+2r)} x - \lambda \mid T^* \mid^{\beta(1+2s)} y$ are proportional, $\lambda \in C$.

Proof. (3.1) Let S, T and R be acting on x, y and z, respectively, and use the g-c-v inequality $|Ecov_R(S,T)|^2 \le Evar_R(S)Evar_R(T)$ to expand.

(3.2) Let $S - \gamma I$, T and R be acting on x, y and z, respectively, and use the g-c-v inequality $|Ecov_R(S - \gamma I, T)|^2 \leq Evar_R(S - \gamma I)Evar_R(T)$ to expand.

(3.3) Let $S=U\mid T\mid^{\alpha(1+2r)}, T=\mid T^*\mid^{\beta(1+2s)}$ and $R=U\mid T\mid^{\alpha(1+2r)}$ be acting on x,y and z, respectively. Use the g-c-v inequality $\mid Ecov_R(S,T)\mid^2 \leq Evar_R(S)Evar_R(T)$, and notice that $\mid T^*\mid^c = U\mid T\mid^c U^*, c>0$. So,

$$(Sx, Ty) = (U \mid T \mid^{\alpha(1+2r)} x, \mid T^* \mid^{\beta(1+2s)} y)$$

$$= (U \mid T \mid^{\alpha(1+2r)} x, U \mid T \mid^{\beta(1+2s)} U^*y)$$

$$= (U \mid T \mid^{\alpha(1+2r)+\beta(1+2s)} x, y)$$

$$= (T \mid T \mid^{\alpha(1+2r)+\beta(1+2s)-1} x, y),$$

and similarly, $(Rz, Ty) = (z, |T|^{\alpha(1+2r)+\beta(1+2s)} U^*y)$. The required inequality thus follows now. We remark that the condition $\alpha(1+2r)+\beta(1+2s) \geq 1$ is unnecessary if T is positive or T is invertible as mentioned in [5].

4. Applications

The following corollaries about inequalities in H are consequences of inequalities in Theorem 3.1. Some of them are generalizations and/or sharpenings of well-known

inequalities in the literature. We shall waive the discussion about equality conditions and leave it to the reader.

Corollary 4.1. Let $S, T \in B(H), e, x, y \in H$ with ||e|| = 1. Then

$$|(Sx, Ty) - (Sx, e)(e, Ty)|^2 \le [||Sx||^2 - |(Sx, e)|^2][||Ty||^2 - |(Ty, e)|^2].$$

Proof. Let
$$R(z) = e$$
 in (3.1) of Theorem 3.1.

We note that Corollary 4.1 appeared in [8, Theorem 1] with a complicated proof. It is the main formula used to sharpen and characterize inequalities in [8].

Corollary 4.2. Let $x, y, z \in H$. Then

$$||||z||^{2}(x,y) - (x,z)(z,y)|^{2}$$

$$\leq [||z||^{2}||x||^{2} - |(x,z)|^{2}][||z||^{2}||y||^{2} - |(y,z)|^{2}].$$

Proof. Let S = T = R = I in (3.1) of Theorem 3.1.

A particular case of Corollary 4.2 is the inequality

$$||x||^2 \le ||z||^2 [||x||^2 ||y||^2 - |(x,y)|^2],$$

if (x, z) = 0 and (y, z) = 1, which is known as the extended Ostrowski inequality in vectors [2, Theorem 4.1].

Corollary 4.3. Let $S \in B(H)$ and $x, z, e \in H$. If e is a unit eigenvector corresponding to an eigenvalue $\overline{\gamma}$ of S^* , and $Sx \neq \gamma x$. Then

$$|(e,z)|^2 \le \frac{||z||^2 ||(S-\gamma I)x||^2 - |((S-\gamma I)x,z)|^2}{||(S-\gamma I)x||^2}.$$

Proof. By assumption, $((S - \gamma I)x, e) = (Sx, e) - (\gamma x, e) = (x, \overline{\gamma}e) - (x, \overline{\gamma}e) = 0$. Let R = I and Ty = e in (3.2) of Theorem 3.1. Then

$$|((S - \gamma I)x, z)(z, e)|^2$$

 $\leq [||z||^2 ||(S - \gamma I)x||^2 - |((S - \gamma I)x, z)|^2][||z||^2 - |(e, z)|^2].$

The required inequality follows by simplifying above.

Remark that in above if both operators $S - \gamma I$ and S are acting on the vector x, then $\operatorname{Evar}_x(S - \gamma I) = \operatorname{Evar}_x(S)$ by Definition 1.1 and a straightforward simplification. This reminds us of the Bernstein's inequality [1] which says that if e is a unit

eigenvector corresponding to an eigenvalue $\gamma \neq 0$ of a selfadjoint operator S, then, for every $x \in H$ and $Sx \neq \gamma x$,

$$|(e,x)|^2 \le \frac{||x||^2 ||Sx||^2 - |(Sx,x)|^2}{||(S-\gamma I)x||^2}.$$

Clearly, the inequality follows easily by letting z = x in Corollary 4.3. We mention also that the inequality in Corollary 4.3 appeared in [7, Theorem 2] with a lengthy proof; and a different generalization of the Bernstein's inequality may be found in Corollary 4.6 below.

The next result generalizes both [3, Theorem 1] and [6, Theorem 1].

Corollary 4.4. Let $T \in B(H)$ and $x, y, z \in H$. For $r, s \geq 0$, $\alpha, \beta \in (0, 1]$ with $\alpha(1+2r)+\beta(1+2s) \geq 1$, and $T=U\mid T\mid$ the polar decomposition, if z is orthogonal to $\mid T\mid^{\alpha(1+2r)+\beta(1+2s)} U^*y$ and $\mid T\mid^{\alpha} z \neq 0$, then

$$| (T | T |^{\alpha(1+2r)+\beta(1+2s)-1} x, y) |^{2} + \frac{(|T^{*}|^{2\beta(1+2s)} y, y) | (|T|^{2\alpha(1+2r)} x, z) |^{2}}{(|T|^{2\alpha(1+2r)} z, z)}$$

$$\leq (|T|^{2\alpha(1+2r)} x, x) (|T^{*}|^{2\beta(1+2s)} y, y).$$

Proof. This is a simple consequence of (3.3) in Theorem 3.1.

Corollary 4.5. Let $T \in B(H)$ and $x, y \in H$. For $r, s \geq 0$, $\alpha, \beta \in (0,1]$ with $\alpha(1+2r) + \beta(1+2s) \geq 1$, and $T = U \mid T \mid$ the polar decomposition, if a unit vector e is orthogonal to $\mid T \mid^{\beta(1+2s)} U^*y$, then

$$| (T | T |^{\alpha(1+2r)+\beta(1+2s)-1} x, y) |^{2} + ||| T^{*} |^{\beta(1+2s)} y ||^{2} | (| T |^{\alpha(1+2r)} x, e) |^{2}$$

$$\leq ||| T |^{\alpha(1+2r)} x ||^{2} ||| T^{*} |^{\beta(1+2s)} y ||^{2} .$$

Proof. We may take $\frac{|T|^{\alpha(1+2r)}z}{\||T|^{\alpha(1+2r)}z\|} = e$, so that

$$(z, |T|^{\alpha(1+2r)+\beta(1+2s)} U^*y) = (|T|^{\alpha(1+2r)} z, |T|^{\beta(1+2s)} U^*y) = 0,$$

i.e., z is orthogonal to $|T|^{\alpha(1+2r)+\beta(1+2s)}U^*y$. The required inequality follows by Corollary 4.4, since

$$\frac{\mid (\mid T\mid^{2\alpha(1+2r)} x,z)\mid^{2}}{(\mid T\mid^{2\alpha(1+2r)} z,z)} = \mid (\mid T\mid^{\alpha(1+2r)} x,\frac{\mid T\mid^{\alpha(1+2r)} z}{\mid\mid\mid T\mid^{\alpha(1+2r)} z\mid\mid})\mid^{2} = \mid (\mid T\mid^{\alpha(1+2r)} x,e)\mid^{2}.$$

Remark that Corollary 4.5 is a generalization of [7, (1) in Theorem 4] and the present proof is direct and much shorter. In particular we have

$$|(T \mid T \mid^{\alpha(1+2r)+\beta(1+2s)-1} x, y)| \le ||T \mid^{\alpha(1+2r)} x || ||T^* \mid^{\beta(1+2s)} y||.$$

Interestingly, the inequality above may be obtained directly from the Cauchy-Schwarz inequality $\mid (x,y) \mid \leq \parallel x \parallel \parallel y \parallel$; just replacing x by $U \mid T \mid^{\alpha(1+2r)} x$, and y by $\mid T^* \mid^{\beta(1+2s)} y$. According to [4] the relation $\mid (Tx,y) \mid \leq \parallel \mid T \mid^{\alpha} x \parallel \parallel \mid T^* \mid^{1-\alpha} y \parallel$, $\alpha \in (0,1]$, is called the Heinz inequality. We see that Corollary 4.5 is obviously its generalization and sharpening.

The next result generalizes both [3, Theorem 4] and [6, Theorem 3].

Corollary 4.6. Let $T \in B(H)$, $x, y \in H$, $s \ge 0$, $\beta \in (0,1]$, and $T = U \mid T \mid$ the polar decomposition. If T has a normal eigenvalue $\gamma \ne 0$ associated with a unit eigenvector e, then

$$|\gamma|^2 |(x,e)|^2 \le \frac{||Tx||^2 ||T^*|^{\beta(1+2s)} y||^2 - |(T|T|^{\beta(1+2s)} x,y)|^2}{||T^*|^{\beta(1+2s)} y||^2},$$

Proof. Since, by assumption, $(\mid T\mid^2 e, e) = (Te, Te) = \mid \gamma \mid^2$, and $(\mid T\mid^2 x, e) = (Tx, \gamma e) = \overline{\gamma}(x, \overline{\gamma} e) = \mid \gamma \mid^2 (x, e)$. The required inequality is obtained by letting $\alpha = 1$, r = 0 and z = e in Corollary 4.4.

The next two lemmas are required for Corollary 4.9 below. Lemma 4.7 is an excellent generalization of the Löwner-Heinz inequality: $A^{\alpha} \geq B^{\alpha}$ if $A \geq B \geq O$ for $\alpha \in (0,1]$. But the inequality does not hold in general if $\alpha > 1$.

Lemma 4.7 (Furuta inequality [5]). If $A \ge B \ge O$, then for each $r \ge 0$,

$$(B^r A^p B^r)^{\frac{\alpha(1+2r)}{p+2r}} \ge B^{\alpha(1+2r)}$$
 and $A^{\alpha(1+2r)} \ge (A^r B^p A^r)^{\frac{\alpha(1+2r)}{p+2r}}$

hold for any $p \ge 1$ and $\alpha \in (0,1]$.

Lemma 4.8. Let T, A, $B \in B(H)$ satisfying conditions $||Tx|| \le ||Ax||$ and $||T^*y|| \le ||By||$ for all $x, y \in H$. Also let $p, q \ge 1$, $r, s \ge 0$, $\alpha, \beta \in (0, 1]$ with $\alpha(1+2r) + \beta(1+2s) \ge 1$, and $T = U \mid T \mid$ the polar decomposition. Then we have

$$(\mid T\mid^{2\alpha(1+2r)} x, x) \le ((\mid T\mid^{2r} A^{2p}\mid T\mid^{2r})^{\frac{\alpha(1+2r)}{p+2r}} x, x);$$

and

$$(\mid T^*\mid^{2\beta(1+2s)} y, y) \le ((\mid T^*\mid^{2s} B^{2q}\mid T^*\mid^{2s})^{\frac{\beta(1+2s)}{q+2s}} y, y).$$

Proof. This is easy and was mentioned in [5, p. 80]. In fact, relations $||Tx|| \le ||Ax||$ and $||T^*y|| \le ||By||$ are equivalent to $|T|^2 \le A^2$ and $|T^*|^2 \le B^2$, respectively. Now, apply the first inequality in Lemma 4.7 to get both required inequalities. \square

The next result without the first inequality appeared in [3, Theorem 3] with a different proof.

Corollary 4.9. Let $T, A, B \in B(H)$ satisfying conditions $||Tx|| \le ||Ax||$ and $||T^*y|| \le ||By||$ for all $x, y \in H$. Also let $p, q \ge 1$, $r, s \ge 0$, $\alpha, \beta \in (0,1]$ with $\alpha(1+2r)+\beta(1+2s)\ge 1$, and $T=U\mid T\mid$ the polar decomposition such that $(T\mid T\mid^{\alpha(1+2r)+\beta(1+2s)-1}z, y)=0$. Then

$$| (T | T |^{\alpha(1+2r)+\beta(1+2s)-1} x, y) |^{2} + \frac{(|T^{*}|^{2\beta(1+2s)} y, y) | (|T|^{2\alpha(1+2r)} x, z) |^{2}}{(|T|^{2\alpha(1+2r)} z, z)}$$

$$\leq ||T|^{\alpha(1+2r)} x ||^{2} ||T^{*}|^{\beta(1+2s)} y ||^{2}$$

$$\leq ((|T|^{2r} A^{2p} |T|^{2r})^{\frac{\alpha(1+2r)}{p+2r}} x, x) ((|T^{*}|^{2s} B^{2q} |T^{*}|^{2s})^{\frac{\beta(1+2s)}{q+2s}} y, y).$$

Proof. Since $(z, |T|^{\alpha(1+2r)+\beta(1+2s)} U^*y) = (T|T|^{\alpha(1+2r)+\beta(1+2s)-1} z, y) = 0$, the inequality (3.3) in Theorem 3.1 becomes

$$\begin{aligned} &||||T|^{\alpha(1+2r)}z||^{2}(T|T|^{\alpha(1+2r)+\beta(1+2s)-1}x,y)|^{2} \\ &\leq [|||T|^{\alpha(1+2r)}z||^{2}|||T|^{\alpha(1+2r)}x||^{2} - |(|T|^{2\alpha(1+2r)}x,z)|^{2}] \\ &\cdot |||T|^{\alpha(1+2r)}z||^{2}|||T^{*}|^{\beta(1+2s)}y||^{2}. \end{aligned}$$

Rewrite it in the following form,

$$\begin{aligned} & | \| | T |^{\alpha(1+2r)} z \|^{2} (T | T |^{\alpha(1+2r)+\beta(1+2s)-1} x, y) |^{2} \\ & + \| | T |^{\alpha(1+2r)} z \|^{2} \| | T^{*} |^{\beta(1+2s)} y \|^{2} | (| T |^{2\alpha(1+2r)} x, z) |^{2} \\ & \leq \| | T |^{\alpha(1+2r)} z \|^{4} \| | T |^{\alpha(1+2r)} x \|^{2} \| | T^{*} |^{\beta(1+2s)} y \|^{2} . \end{aligned}$$

The inequality above devided by $\| |T|^{\alpha(1+2r)} z \|^4$ on both sides, and applying Lemma 4.8 yield the desired inequality.

At this stage we have to mention that part of the inequality in Corollary 4.9, i.e.,

$$| (T | T |^{\alpha(1+2r)+\beta(1+2s)-1} x, y) |^{2}$$

$$\leq ((|T|^{2r} A^{2p} | T |^{2r})^{\frac{\alpha(1+2r)}{p+2r}} x, x) ((|T^{*}|^{2s} B^{2q} | T^{*}|^{2s})^{\frac{\beta(1+2s)}{q+2s}} y, y).$$

is equivalent to Lemma 4.7, cf. [5, Theorem 1 and p. 82]. We also mention that Corollary 4.9 (let r=s=0 there) generalizes and sharpens the so called Heinz-Kato-Furuta inequality [3, p. 224], which says that for $A, B \geq O$ if $||Tx|| \leq ||Ax||$ and $||T^*y|| \leq ||By||$, then

$$\mid (T \mid T \mid^{\alpha+\beta-1} x, y) \mid \leq \parallel A^{\alpha}x \parallel \parallel B^{\beta}y \parallel$$

for every $x, y \in H$, $\alpha, \beta \in (0,1]$ with $\alpha + \beta \geq 1$. In particular, it is called the Heinz-Kato inequality if $\alpha + \beta = 1$.

Corollary 4.10. Let $S, K, V \in B(H), S \geq O, SK$ be selfadjoint, and let $SK = V \mid SK \mid$ be the polar decomposition. For $x, y \in H$, $r, s \geq 0$, $\alpha, \beta \in (0,1]$ with $\alpha(1+2r) + \beta(1+2s) \geq 1$ and $p, q \geq 1$, if there exists a unit vector e orthogonal to $\mid SK \mid^{\beta(1+2s)} V^*y$, then

$$\begin{split} & \mid (SK \mid SK \mid^{\alpha(1+2r)+\beta(1+2s)-1} x, y) \mid^{2} \\ & + \mid \mid SK \mid^{\beta(1+2s)} y \mid^{2} \mid (\mid SK \mid^{\alpha(1+2r)} x, e) \mid^{2} \\ \leq & \mid \mid SK \mid^{\alpha(1+2r)} x \mid^{2} \mid \mid SK \mid^{\beta(1+2s)} y \mid^{2} \\ \leq & \mid \mid K \mid^{\frac{2p(1+2r)\alpha}{p+2r} + \frac{2q(1+2s)\beta}{q+2s}} ((\mid SK \mid^{2r} S^{2p} \mid SK \mid^{2r})^{\frac{\alpha(1+2r)}{p+2r}} x, x) \\ & \cdot ((\mid SK \mid^{2s} S^{2q} \mid SK \mid^{2s})^{\frac{\beta(1+2s)}{q+2s}} y, y). \end{split}$$

Proof. The first inequality is obtained by replacing T by SK in Corollary 4.5, and the second inequality was proved in [9, Proof of Theorem 1, p. 857] using the Furuta inequality.

Consequently, a particular case of Corollary 4.10 (let r, s = 0 there) is the inequality

$$|(SK \mid SK \mid^{\alpha+\beta-1} x, y)| \le ||K||^{\alpha+\beta} ||S^{\alpha}x|| ||S^{\beta}y||$$

which is equivalent to the Löwner-Heinz inequality [9, Corollary 1]. Notice also that Corollary 4.10 is a generalization and sharpening of the Reid's inequality:

$$|(SKx, x)| \le ||K|| (Sx, x) [10].$$

In fact, let
$$\alpha = \beta = \frac{1}{2}$$
, $r = s = 0$ and $p = q = 1$ in Corollary 4.10. Then
$$| (SKx, y) |^2 + (|SK| y, y) | (|SK|^{1/2} x, e) |^2$$

$$\leq (|SK| x, x)(|SK| y, y)$$

$$\leq ||K||^2 (Sx, x)(Sy, y).$$

5. Semi-inner Product $Ecov_R(\ ,\)$ in B(H) and Inner Product $(\ ,\)$ in H

Let $S, T, R \in B(H)$ and let S, T and R be acting on x, y and z, respectively. In this final section we would like to explain the relationships between the semi-inner product $Ecov_R(S,T)$ in B(H) and the inner product (x,y) in H. In fact, by section two it is understandable that $Ecov_R(S,T)$ corresponds to (x,y), and that $Evar_R(S)$ $(\neq 0)$ to $(x,x) = ||x||^2$ $(\neq 0)$. Moreover, a single vector x corresponds to the operator S. In other words, to every inequality in H there is an inequality expressed in terms of covariance and variance, and vice versa. For instance, to Corollary 2.2 we have

Corollary 5.1. For $x, y, e \in H$ with ||e|| = 1, then

$$|(x,y) - (x,e)(e,y)|^2 \le [||x||^2 - |(x,e)|^2][||y||^2 - |(e,y)|^2].$$

Proof. The proof can be done similarly and correspondingly as in Corollary 2.2, i.e., let u = (x, e) and v = (y, e). Then

$$|(x,y) - (x,e)(e,y)|^2 = |(x,y) - u\overline{v}|^2 = |(x - ue, ve - y)|^2$$

 $\leq ||x - ue||^2 ||ve - y||^2$ by the Cauchy-Schwarz inequality
 $= [||x||^2 - |u|^2][||y||^2 - |v|^2].$

Remark that Corollary 5.1 is also obtained from Corollary 4.1 if S = T = I.

On the other hand, notice that an extension of the Cauchy-Schwarz inequality in three vectors x, y and w is as follows:

$$|(w,x)(x,y)| \le \frac{\parallel y \parallel \parallel w \parallel + |(w,y)|}{2} \parallel x \parallel^2 [8, p. 248].$$

This may be obtained, among other proofs, by replacing x by $2(w,x)x - \|x\|^2 w$ in the Cauchy-Schwarz inequality, and note that $\|2(w,x)x - \|x\|^2 w \|= \|x\|^2 \|w\|$. Therefore,

$$2 \mid (w, x)(x, y) \mid - \parallel x \parallel^{2} \mid (w, y) \mid$$

$$\leq \mid 2(w, x)(x, y) - \parallel x \parallel^{2} \mid (w, y) \mid$$

$$= \mid (2(w, x)x - \parallel x \parallel^{2} w, y) \mid$$

$$\leq \parallel x \parallel^{2} \parallel w \parallel \parallel y \parallel,$$

and we have the Cauchy-Schwarz inequality in three vectors.

To the inequality above we have the next result which is an extension of the g-c-v inequality for four operators $S, T, Q, R \in B(H)$. The proof will be done similarly and correspondingly as above.

Corollary 5.2. For $S, T, Q, R \in B(H)$ let S, T, Q and R be acting on x, y, w and z, respectively for every $x, y, w, z \in H$. Then

$$| Ecov_R(Q, S)Ecov_R(S, T) |$$

$$\leq \frac{[\operatorname{Evar}_R(T)]^{1/2}[\operatorname{Evar}_R(Q)]^{1/2} + | Ecov_R(Q, T) |}{2} Evar_R(S).$$

Proof. We shall use formulas in Lemma 2.1 to simplify relations. First, replace S in the g-c-v inequality by the operator $2Ecov_R(Q,S)S-Evar_R(S)Q$, and notice that

$$\begin{split} Evar_R(2Ecov_R(Q,S)S - Evar_R(S)Q) \\ &= Evar_R(2Ecov_R(Q,S)S) + Evar_R(Evar_R(S)Q) \\ &- 2ReEcov_R(2Ecov_R(Q,S)S, Evar_R(S)Q) \text{ by } (2.6) \text{ of Lemma } 2.1 \\ &= 4 \mid Ecov_R(Q,S) \mid^2 Evar_R(S) + [Evar_R(S)]^2 Evar_R(Q) \\ &- 4 \mid Ecov_R(Q,S) \mid^2 Evar_R(S) \\ &= [Evar_R(S)]^2 Evar_R(Q). \end{split}$$

Now,

$$\begin{aligned} &2 \mid Ecov_R(Q,S)Ecov_R(S,T) \mid -Evar_R(S) \mid Ecov_R(Q,T) \mid \\ &\leq \mid 2Ecov_R(Q,S)Ecov_R(S,T) - Evar_R(S)Ecov_R(Q,T) \mid \\ &= \mid Ecov_R(2Ecov_R(Q,S)S - Evar_R(S)Q,T) \mid \\ &\leq \left[Evar_R(2Ecov_R(Q,S)S - Evar_R(S)Q) \right]^{1/2} [Evar_R(T)]^{1/2} \text{ by the g-c-v inequality} \\ &= Evar_R(S)[Evar_R(Q)]^{1/2} [Evar_R(T)]^{1/2} \text{ by the notice above} \end{aligned}$$
 and the proof is completed.

REFERENCES

- 1. H. J. Bernstein: An inequality for selfadjoint operators in a Hilbert space. *Proc. Amer. Math. Soc.* **100** (1987), 319-321.
- 2. M. Fujii, C.-S. Lin & R. Nakamoto: Alternative extensions of Heinz-Kato-Furuta inequality. Sci. Math. 2 (1999), 215-221.

- 3. M. Fujii & R. Nakamoto: Extensions of Heinz-Kato-Furuta inequality. Proc. Amer. Math. Soc. 128 (1999), 223-228.
- 4. T. Furuta: A simplified proof of Heinz inequality and scrutiny of its equality. Proc. Amer. Math. Soc. 97 (1986), 751-753.
- 5. T. Furuta: Generalization of Heinz-Kato theorem via Furuta inequality. Operator Theory 62 (1993), 77-83.
- 6. C.-S. Lin: Heinz's inequality and Bernstein's inequality. Proc. Amer. Math. Soc. 125 (1997), 2319-2325.
- 7. C.-S. Lin: On variance and covariance for bounded linear operators. *Acta Mathematica Sinica* 17 (2001), 657-668.
- 8. C.-S. Lin: On sharpening and characterizing operator inequalities. *Bull. Institute Math. Academia Sinica* **29** (2001), 243-261.
- 9. C.-S. Lin: Inequalities of Reid type and Furuta. Proc. Amer. Math. Soc. 129 (2001), 855-859.
- 10. W. T. Reid: Symmetrizable completely continuous linear transformation in Hilbert space. *Duke Math. J.* **18** (1951), 41-56.

Department of Mathematics, Bishop's University, Lennoxville, Quebec J1M 1Z7, Canada

Email address: plin@ubishops.ca