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ABSTRACT. We introduce the notion of the generalized covariance and variance
for bounded linear operators on a Hilbert space, and prove that the generalized
covariance-variance inequality holds. It turns out that the inequality is a useful
formula in the study of inequality involving linear operators in Hilbert spaces.

1. DEFINITION AND INTRODUCTION

Let H be a Hilbert space over the field C' of complex numbers. Let B(H) be
the algebra of all bounded linear operators on H into itself; I denotes the identity
operator, O the zero operator, and T™* the adjoint of T € B(H). The next definition
was partially mentioned in our paper [8] without proof nor applications. Thus, the

present paper is a continuation of [8].

Definition 1.1. For S, T, R € B(H) let S, T and R be acting on z, y and 2,
respectively for every z, y, 2 € H. The generalized covariance for S, T and R on H
is defined by

Ecovr(S,T) =|| Rz ||? (Sz,Ty) — (Sz, Rz)(Rz,Ty),

where the symbol (-, -) means the usual inner product in H. The generalized variance
for S and R on His a real number defined by

Evarg(S) = Ecovgr(S,S) =|| Rz |?|| Sz ||> — | (Sz,Rz) |2.

Recall in particular that the covariance for S and T on H, and the variance for
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S on H, respectively, are defined in [7] as follows:
Cov,(S,T) =|| z ||* (Sz,Tz) — (Sz, 2)(z, Tx),

and
Var,(S) = Cov,(8S,S) =|| z |1*]) Sz ||* - | (Sz,2) |*.

The covariance and variance for operators on H were extensively studied in (7, 8]
with applications in inequalities involving linear operators in H. In this paper we
first prove that the generalized covariance-variance inequality hold. The inequality
is used to create and to prove inequalities in H. Consequently, it turns out that many
well-known inequalities in the literature follow easily as special cases; and related
and improved inequalities are given. We show that Ecovg( , ) is indeed a semi-inner
product in B(H); and relationships between this and the usual inner product ( , )

in H are explained in the last section.

2. BAsiC RESULTS AND GENERALIZED COVARIANCE-VARIANCE
INEQUALITY

In this section we present basic results about the generalized covariance and
variance; we prove that the generalized covariance-variance inequality holds true
and the equality condition is given. Let Re o denote the real part of & € C.

Lemma 2.1. For S,T,R,Q € B(H) let S,T,R and Q be acting on z,y,z and w,
respectively for every z,y,z,w € H. Then the following relations hold.

(2.1) Ecovr(S,S) = Evargr(S) > 0.

(2.2) Ecovr(S,S) = Evarr(S) =0 if and only if Rz and Sz are proportional.

(2.3) Ecovr(Q £ S,T) = Ecovr(Q,T) + Ecovr(S,T).

(2.4) Ecovr(AS,T) = AEcovg(S,T) for any A € C.

(2.5) Ecovg(T,S) = Ecovp(S,T).

(2.6) Evarp(Q x S) = Evarg(Q) + Evarg(S) £ 2Re Ecovr(Q, S).

(2.7) | Ecovg(S,T) |*< Evarg(S)Evarg(T).

(We shall call (2.7) the generalized covariance-variance inequality, the g-c-v in-
equality in short).

Moreover, if Evargr(S) # 0 # Evarg(T), then the g-c-v equality holds if and only
if Rz and Sx — ATy are proportional, A € C.
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Proof. (2.1) and (2.2) are due to Definition 1 and the Cauchy-Schwarz inequality
and equality; and (2.3), (2.4), (2.5) and (2.6) are also by Definition 1. We see that
conditions (2.1), (2.3), (2.4) and (2.5) constitute a semi-inner product Ecovg( , ) in
B(H) (it is not necessarily an inner product, since from (2.2) it does not have to
follow that S = O). It follows that the Cauchy-Schwarz inequality holds in B(H),
which is precisely the g-c-v inequality (2.7). Neverthless, for the sake of completeness
let us prove it directly as follows. ‘
If Evarg(S) = 0, then Rz and Sz are proportional by (2.2), and hence
Ecovg(S,T) =0.

Similarly for the case Evarg(T) = 0. Assume Evarg(S) # 0 # Evargr(T) and write
u = Evarg(T) > 0 and v = Ecovg(8S.T), then, by (2.3), (2.4) and (2.5),
1
0< ZECO’UR(US —vT. uS — vT)

= uBvarg(S)— v 2= v 2+ |v ?

= u Evarg(§)— |v [

= Evarp(T)Evarg(S)— | Ecovr(S,T) |2,
and this proves the g-c-v inequality. It follows by above that the g-c-v equality holds
if and only if Ecovr(uS — vT.uS — vT) = 0, if and only if Rz and uSz — vTy are
proportional by (2.2), and the proof is completed. O

Now, firstly we require a special operator: For w € H let P, € B(H) be defined

by P,(z) = (z,w)w for every z € H. In particular, P.(e) = e. Secondly observe
that for every nonzero vector x € H there exists a unit vector orthogonal to z. For

example, for any nonzero vectors y,w € H let ¢ = ﬂ%ﬂ withw =y— (I?f—;”)} The next
result is an application of the g-c-v inequality, which will be used in section five.

Corollary 2.2. For a unit vector e € H and S,T,R, P, € B(H) let S,T,R and P,
be acting on z,y.z and e, respectively for every x,y,z € H. Then

| Ecovr(S,T) — Ecovr(S, P.)Ecovr(P,,T) |2

< [Evarr(S)— | Ecour(S. P.) |*|][Evarr(T)— | Ecovg(P,,T) |?]

if Evarr(F.) = 1. The equality holds if and only if Rz and Sz + oTy — Be are
proportional, o, B € C.
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Proof. Let u = Ecovr(S, P.) and v = Ecovg(T, P.), and note that
Evarg(uP,) =|u |*> and Evargp(vP,) =|v|?.

Then

| Ecovp(S.T) — Ecovg(S, P.)Ecovg(P.,T) |?

=| Ecovg(S,T) — u¥ |*=| Ecovg(S — uP.,vP, = T) |?

< Evarg(S — uP.)Evarg(vP. — T) by the g-c-v inequality

= [Bvarg(S)— | u |}][Evarr(T)— | v |*] by (2.6) of Lemma 2.1,
and the required inequality follows. The equality holds if and only if Rz and Sx —
ue — A(ve — T'y) are proportional by (2.2) in Lemma 2.1, u,v, A € C, which is the

given condition.

3. INEQUALITIES BY GENERALIZED COVARIANCE AND VARIANCE

Before proceeding further about inequalities in H, we require some notations
and their propperties. Let A, B, T, U € B(H). If A is a positive operator, we write
A > O.1If A and B are selfadjoint, we write A > Bwhen A~B>O0.Let T=U | T |
be the polar decomposition of T with U the partial isometry, and | T | the positive
square root of the positive operator T*7T. A basic well-known property about the
polar decomposition of T is that the equality | T7* |°= U | T | U* holds for any
c¢>0,and U*U =1 [4, p. 752]; this formula will also be used frequently in the next
two sections. We recall that a complex number v # 0 is a normal eigenvalue for T'
if both relations Tz = yz and T*z = Fz hold associated with the same eigenvector
x # 0.

In the next result the proof of each inequality is nothing but expanding and
simplifying a suitable g-c-v inequality, which is easy and a straightforward process.
This shows the usefulness of the g-c-v inequality and simplicity in the proof of

inequalities in H.

Theorem 3.1. Let S,T,R,U € B(H). Then the following inequalities hold for
every x,y,2,e € H with || e ||=1.
(3.1 |l Rz |? (Sz, Ty) — (Sz. R2)(Rz, Ty) |?
<[l Rz |*|| Sz |* - | (Sz, Rz) P][ll R= Il Ty I* — | (Ty, Rz) I*].
The equality holds if and only if Rz and Sz — XT'y are proportional, A € C.
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(3:2) Il Rz |I* (S = vI)z, Ty) — ((S — v])z, Rz)(Rz, Ty) |?
<UF Rz IP)| (S =Dz I* = | (S = vD)z, Rz) P[ll Rz |I*)| Ty |2
— | (Ty, Rz) ]
for v € C and Sz # yx. The equality holds if and only if Rz and (S —~vI)x — ATy
are proportional. A € C.
(3.3) Let 1,5 > 0, o, B € (0,1] with a(1+2r)+B8(1+28)> 1, and T=U | T |
the polar decomposition. Then
T [a(1+21') 2 “2 (T|T [a(1+2r)+ﬂ(1+2s)—1 z,y)
_ (‘ T '2a(l+2'r) z. z)(z, i T ‘a(l+2r)+,6'(1+2s) U*y) ‘2
<[NT PO 2 2T P00 2 |2 — | (| T PO 2, 2) P
T Ia(1+2r) 2 ||| T tﬁ(1+2s) g2 =1 (2T |a(1+27‘)+3(1+2s) Uy 12].
The equality holds if and only if U | T |*(03427) z gnd U | T |20+2) g\ | T |B(1+29)
y are proportional, A € C.

Proof. (3.1) Let S, T and R be acting on z. y and z, respectively, and use the g-c-v
inequality | Ecovr(S,T) |2< Evarg(S)Evarg(T) to expand.

(3.2) Let S—~I, T and R be acting on z, y and z, respectively, and use the g-c-v
inequality |Ecovg(S — +I,T)|*> < Evarg(S — vI)Evarg(T) to expand.

(33) Let § = U | T #0427, T =| 7* [P0+2)and R = U | T |*(+2") be
acting on z, ¥ and 2, respectively. Use the g-c-v inequality | Ecovg(S,T) |*°<
Evargr(S)Evarg(T), and notice that | T* |°=U | T | U*, ¢ > 0. So,

(82,Ty) = (U | T |42 5, T |P0429) o)
— (U l T ]a(1+2r) o, U|T ',3(1+2s) U*y)
=(U|T |a(1+2'r)+3(1+2s) a:,y)
— (T | T la(1+2r)+B(1+2s)-1 :r,y),

and similarly, (Rz, Ty) = (2, | T |*(+21)+8(1+2s) {7*)) The required inequality thus
follows now. We remark that the condition (1 + 2r) + 3(1 + 2s) > 1 is unnecessary
if T is positive or T is invertible as mentioned in [5].

4. APPLICATIONS

The following corollaries about inequalities in H are consequences of inequalities
in Theorem 3.1. Some of them are generalizations and/or sharpenings of well-known
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inequalities in the literature. We shall waive the discussion about equality conditions
and leave it to the reader.

Corollary 4.1. Let S, T € B(H), e, z,y € H with || e ||= 1. Then
| (S2,Ty) - (Sz,€)(e, Ty) < [ Sz |* = | (Sz.€) )l Ty I* - | (Tw.e) ]

Proof. Let R(z) = e in (3.1) of Theorem 3.1. O

We note that Corollary 4.1 appeared in [8, Theorem 1] with a complicated proof.

It is the main formula used to sharpen and characterize inequalities in [8].

Corollary 4.2. Let z,y, z € H. Then

1212 (z.9) = (z,2)(2,9)
<Wz Pl =1 @2) Pl 2 Phy 12 = 1 (y.2) ).

Proof. Let S =T = R=1in (3.1) of Theorem 3.1. O

A particular case of Corollary 4.2 is the inequality

Pz 2<hz 12 Ml 1Py 12 = 1 (29) P,

if (z,2) = 0 and (y, z) = 1, which is known as the extended Ostrowski inequality in

vectors [2, Theorem 4.1].

Corollary 4.3. Let S € B(H) and z, z. e € H. If e is a unit eigenvector corre-
sponding to an eigenvalue ¥ of S*. and Sz # vyx. Then

Lz 1211 (S =Dz |2 = | (S = yD)z,2) 2

2
enls [E—D [P

Proof. By assumption, ({(S —vI)z,e) = (Sz,e) — (yz,¢e) = (z,7e) — (z,7e) = 0. Let
R =171 and Ty = e in (3.2) of Theorem 3.1. Then

| (S — D)z, 2)(z,¢) [*

<l =12 (S =ADe |? = | (S =Dz, 2) Pllll 2 * - | (e,2) L.
The required inequality follows by simplifying above. 0

Remark that in above if both operators S — I and S are acting on the vector z,
then Evar, (S —+vI) =Evar;(S) by Definition 1.1 and a straightforward simplification.
This reminds us of the Bernstein’s inequality [1] which says that if e is a unit
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eigenvector corresponding to an eigenvalue 7y # 0 of a selfadjoint operator S, then,
for every x € H and Sz # vz,

| (e,3) 2< L= %] S |* - | (S=,2)
I (8§ =Dz |?

Clearly, the inequality follows easily by letting z = z in Corollary 4.3. We mention

also that the inequality in Corollary 4.3 appeared in {7, Theorem 2] with a lengthy

proof; and a different generalization of the Bernstein’s inequality may be found in
Corollary 4.6 below.

The next result generalizes both {3, Theorem 1] and [6, Theorem 1}.

Corollary 4.4. Let T € B(H) and z,y,z € H. For r,s > 0, a,3 € (0.1] with
a(l+2ry+B8(1+2s) > 1, and T = U | T | the polar decomposition, if z is
orthogonal to | T [*(+2)+8(1+25) [7*y gnd | T |* z # 0, then

(| > [2P042) g ) | (| T o042 g, 2) |2
(‘ T |2a(l+2r) z,z)

i (T ‘ T |a(1+2r)+ﬁ(1+2s T, y) !2

< (1 T |2a(1+2r) CE,(IJ)(I T l25(1+2s) y,y)_

Proof. This is a simple consequence of (3.3) in Theorem 3.1. 0

Corollary 4.5. Let T € B(H) and z,y € H. For r,s > 0, o, 8 € (0,1] with
a(l+2r)+B8(1+2s) > 1, and T = U | T | the polar decomposition, if a unit vector
e is orthogonal to | T |50+28) U*y then

(T | T (2OA20HB042)=1 gy 2y ) 7> (50+2) g 12) (| 7 20420 g 2
<[} T 20420 g 2 T PO42) g |12

T 0(1+2r)z

Proof. We may take TCSEERR

= e, so that
(Z, ! T ‘a(1+21‘)+,6‘(1+23) U*y) - (, T ’a(1+2r) z, , T ,B(H—QS) U*y) =0,

i.c., z is orthogonal to | T |#(1+2)+8(1+2s) [/*; The required inequality follows by

Corollary 4.4, since

l (! T ’20(14-21*) II),Z) |2
(! T '2a(l+2r) z, Z)

[T ‘a(l-{—?r) Py
T e 2]

= (| T |0+ ¢ ) P= (| T 120+ z.e) 2.

O



144 C.-S. LiN

Remark that Corollary 4.5 is a generalization of {7, (1) in Theorem 4] and the

present proof is direct and much shorter. In particular we have
[ (T | T [pOH2+80F20=1 g ) | T [XCH20 o T P02 g )

Interestingly, the inequality above may be obtained directly from the Cauchy-Sch-
warz inequality | (z,y) |<|| = ||| ¥ ||; just replacing by U | T |*(1+?") 2 and y by
| T* |(0+25) 4 According to [4] the relation | (Tz,y) | <|| T 1=z |JJ}| T* *=* v ||,
a € (0,1}, is called the Heinz inequality. We see that Corollary 4.5 is obviously its

generalization and sharpening.

The next result generalizes both {3, Theorem 4] and [6, Theorem 3].

Corollary 4.6. Let T € B(H), z,y € H,s>0,8€ (0,1], and T =U | T | the
polar decomposition. If T has a normal eigenvalue v # 0 associated with a unit
eigenvector e, then

T 1|21} T* (A(1+25) 2 T T 1A(1+2s) 2

Proof. Since, by assumption, (| T |2 e.e) = (Te,Te) =| v |?, and (| T | z,€) =
(Tz,ve) = ¥(z,7e) =| v |* (z,€). The required inequality is obtained by letting
a=1,r=0and z = e in Corollary 4.4. O

The next two lemmas are required for Corollary 4.9 below. Lemma 4.7 is an
excellent generalization of the Lowner-Heinz inequality: A* > B*if A > B > O for
a € (0,1]. But the inequality does not hold in general if a > 1.

Lemma 4.7 (Furuta inequality [5]). If A > B > O, then for eachr > 0,

(B APBT)*55 > BaO+a) ang 40(+20) > (47 BPATY e

hold for any p > 1 and « € (0,1].

Lemma 4.8. Let T, A, B € B(H) satisfying conditions || Tz ||<|| Az || and
| T*y |I<|| By || for all z,y € H. Also let p,q > 1, 7,5 > 0, a,8 € (0.1] with
a(l+2r)+B(1+2s) > 1, and T =U | T | the polar decomposition. Then we have

a(l42r)

(1T P20+ g,2) < (| T 7 A% | T ) 5% 1,2);

and
B( +
(| T* PPO329) y ) < (| T* P B2 | T+ ) %65y, ).
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Proof. This is easy and was mentioned in [5, p. 80]. In fact, relations || Tz ||<|| Az ||
and || T*y ||<|| By || are equivalent to | T |2< A? and | T* |?< B2, respectively.
Now, apply the first inequality in Lemina 4.7 to get both required inequalities. O

The next result without the first inequality appeared in [3, Theorem 3] with a
different proof.

Corollary 4.9. Let T, A, B € B(H) satisfying conditions | Tz ||<|| Az || and
| T*y ||<{ By || for all z,y € H. Also let p,q > 1, 1,5 > 0, a, 8 € (0,1] with
a(l+2r)+B(1+2s) 21, and T = U | T | the polar decomposition such that
(T|T la(1+2r)+[:7(1+2s)—~1 z,5) = 0. Then

(T P04 yyy) | (T P ,2) P

a(14+2r)+8(1+2s) -1 2
' (T ' T I x,y) l + (I T [2a(1+2r) Z,Z)

<|| T |22 g |2 7 B2 2
a(l+2r 8(1+2s)
(T A% | T PS5, 2)((| T [ B | T %)%y, ).

Proof. Since (z,| T [d1+2)+30426) ey — (T | T [p(+2)+8(1+29-1 5 1y — 0 the
inequality (3.3) in Theorem 3.1 becomes
| T 120420 2|2 (7 | T |p(42r)+804+2)=1 5 0y |2
ST RO 2 P T PO 2 2 = | (| T P20 2,2) 7]
T 2 T POy 2

Rewrite it in the following form,
[T (0420 2 |2 (T | T O+ 0020 L g ) 2
+ | T POFED 2 |2 7 PO g |2 (| T Pe0F) g, 2) 2
Sl“ T ]a(1+2r) p “4m T 1&(1-{—27) T ”2“! T* I,B(H—Zs) y HZ )

The inequality above devided by ||| T [*(*+2") 2z ||4 on both sides, and applying
Lemma 4.8 yield the desired inequality. 0

At this stage we have to mention that part of the inequality in Corollary 4.9, i.e.,
| (T i T Ia(l+21‘)+ﬁ(1+2s)—1

z,y)
a(1+2r) B(1+2s)
ST Pr AP | T Py oro g,o)((| T* 1 B¥ | T* ) &% y,p).



146 C.-S. Lin

is equivalent to Lemma 4.7, cf. [5, Theorem 1 and p. 82]. We also mention that
Corollary 4.9 (let r = s = 0 there) generalizes and sharpens the so called Heinz-
Kato-Furuta inequality {3, p. 224], which says that for A,B > O if || Tz ||<|| Az ||
and || T*y ||<|| By ||, then

| (T T **  a,y) 1<) A% || B%Y |
for every z,y € H, o, 8 € (0,1) with a + 8 > 1. In particular, it is called the
Heinz-Kato inequality if o + = 1.

Corollary 4.10. Let S, K,V € B(H), S > O, SK be selfadjoint, and let SK =
V | SK | be the polar decomposition. For z,y € H, r,8 > 0, o, 8 € (0,1] with
a{l +2r)+ 8(1 4+ 28) > 1 and p, q > 1, if there exists a unit vector e orthogonal to
| SK |B(+29) V*y  then

| (SK I SK |a(1+2r)+,3(1+2s)—1 :v,y) |2
+ || SK [P0F2) 4 |2 (| SK |20H2) g ) 2
<) SK [#0+2) 5 |2 Sk [PO+29) 4 )12

2p(1+2r)a , 2q(1+2s)8

a(l+2r)
<K | tTws (| SK ¥ S | SK ) w e x,1)

8(14-28)
(I SK | 8% | SK ) 55y, y).

Proof. The first inequality is obtained by replacing T by SK in Corollary 4.5, and
the second inequality was proved in [9, Proof of Theorem 1, p. 857} using the Furuta
inequality. g

Consequently, a particular case of Corollary 4.10 (let r,s = 0 there) is the in-
equality
| (SK | SK 12072 ) [<I| K ||**7) 8% ||| $°y I,
which is equivalent to the Lowner-Heinz inequality [9, Corollary 1]. Notice also that
Corollary 4.10 is a generalization and sharpening of the Reid’s inequality:

| (SKz,z) |<|| K || (Sz,z) [10].
In fact, let @ = 5 = %, r=s=0and p=¢q=1in Corollary 4.10. Then
| (SKz,y) > +(| SK | v,9) | (| SK [V z,e)
< (I SK |z, 2)(| SK |y,9)
<|| K ||* (Sz,)(Sy, y)-
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5. SEMI-INNER PRODUCT Ecovg(,) IN B(H) AND INNER PRODUCT (,)
IN H

Let S, T, R € B(H) and let S, T and R be acting on z, y and z, respectively. In
this final section we would like to explain the relationships between the semi-inner
product Ecovg(S,T) in B(H) and the inner product (z.y) in H. In fact, by section
two it is understandable that Ecovr(S,T') corresponds to (xz,y), and that Evarg(S)
(#0) to (z,z) = = ||* (# 0). Moreover, a single vector x corresponds to the operator
S. In other words, to every inequality in H there is an inequality expressed in terms

of covariance and variance, and vice versa. For instance, to Corollary 2.2 we have
Corollary 5.1. For z,y, e € H with || e ||[= 1, then
| (z,9) — (@) ey) P< 2 1P =) (z,0) Py 12 — | (&) P

Proof. The proof can be done similarly and correspondingly as in Corollary 2.2, ie.,
let u = (z,e) and v = (y,¢e). Then
t (m,y) - (:C,e)(e,y) |2:| (x,y) - uv ]Zzl (Z’ — ue,ve — y) ]2
<l z —ue ||* ve —y ||* by the Cauchy-Schwarz inequality
=z~ fu Py l? —1v P
O

Remark that Corollary 5.1 is also obtained from Corollary 4.1 if S =T = 1.
On the other hand, notice that an extension of the Cauchy-Schwarz inequality in
three vectors z,y and w is as follows:

I (w,z)(x,y) is “ Y ““ w “ 2+ ‘ (w,y) ’ “ T ”2 [8, p. 248].

This may be obtained, among other proofs, by replacing = by 2(w, z)z— || z |2 w in
the Cauchy-Schwarz inequality, and note that || 2(w, z)z— || z |2 w ||=|] = ||*]| w || .
Therefore,

2| (w.2)(z,v) |~ | = || (w,9) |
<) 2(w,z)(z,9)~ || @ |* (w,y) |
=| (2w, z)e— | 2 |> w,y) |

<l 1Pl w iy,

and we have the Cauchy-Schwarz inequality in three vectors.
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To the inequality above we have the next result which is an extension of the g-c-v
inequality for four operators S,T,Q, R € B(H). The proof will be done similarly

and correspondingly as above.
Corollary 5.2. For S, T, Q, R € B(H) let 5.T,Q and R be acting on z, y, w and
z, respectively for every x, y, w, 2 € H. Then

| Ecovr(Q, S)Ecovr(S,T) |

[Evarp(T))!/2[Evarr(Q)]"/2+ | Ecovr(Q.T) |
2

Proof. We shall use formulas in Lemma 2.1 to simplify relations. First, replace S in
the g-c-v inequality by the operator 2Ecovgr(Q, S)S—Evarg(S)Q, and notice that
Evarg(2Ecovr(Q, S)S — Evarg(S)Q)
= Evargr(2Ecovg(Q, S)S) + Evarg(Evarg(S)Q)
— 2ReEcovr(2Ecovr(Q, S)S, Evarr(S)Q) by (2.6) of Lemma 2.1
= 4| Ecovr(Q, S) |? Evarg(S) + [Evargr(S)]*Evarr(Q)
— 4| Ecovp(Q, S) > Evargp(S)
= [Fvarg(S))?Evarg(Q).

Evarg(S).

<

Now,

2 | Ecovr(Q, S)Ecovr(S,T) | —Evarg(S) | Ecovg(Q,T) |

<| 2Ecovr(Q, S)Ecovg(S,T) — Evarr(S)Ecovr(Q,T) |

=| Ecovg(2Ecovg(Q, S)S — Evarg(8)Q,T) |

< [Bvarg(2Ecovr(Q, S)S — Evarg(S)Q)]Y/?[Evarg(T)]/? by the g-c-v inequality
= Evarg(S)[Evarg(Q)]"/*[Evarg(T)]*/? by the notice above

and the proof is completed. O
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