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THE ASYMPTOTIC BEHAVIOR OF GENERALIZED
QUADRATIC MAPPINGS ON RESTRICTED DOMAINS |

Ick-SooN CHANG* AND HARK-MAHN Kim **

ABSTRACT. In this paper we solve the Hyers-Ulam stability problem for quadratic
functiona. equations on restricted domains, and then obtain an asymptotic behavior
of quadratic mappings on restricted domains.

1. INTRODUCTION

In 1960 and in 1964 S. M. Ulam (17, 18] proposed the general Ulam stability
problem: “When is it true that by slightly changing the hypotheses of a theorem
one can still assert that the thesis of the theorem remains true or approximately
true?” The concept of stability for a functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation.
Thus one can ask the following question for general functional equations: If we
replace a given functional equation by a functional inequality, when can one assert
that the solutions of the inequality must be close to the solutions of the given
equation? If the answer is affirmative, we would say that a given functional equation
is stable. In 1978 P. M. Gruber [6] remarked that Ulam’s problem is of particular
interest in probability theory and in the case of functional equations of different
types. We wish to note that stability properties of different functional equations
can have applications to unrelated fields. For instance, Zhou [19] used a stability

property of the functional equation f(x—y)+ f(z+y) = 2f(z) to prove a conjecture

Received by the editors June 5, 2006 and, in revised form, August 16, 2006.
**Corresponding author.

2000 Mathematics Subject Classification. 39B52, 39B82.

Key words and phrases. Ulam stability problem, functional inequality, generalized quadratic
mappings.

YThis work was supported by the Korea Research Foundation Grant funded by the Korean Gov-
ernment (MOEHRD) (KRF-2005-070-C00009).

(© 2006 Korea Soc. Math. Educ.
237



238 Ick-SooN CHANG™ AND HARK-MAHN Kim ™™

of Z. Ditzian about the relationship between the smoothness of a mapping and the
degree of its approximation by the associated Bernstein polynomials.

Now, a square norm on an inner product space satisfies the important parallelo-
gram equality ||z +y|?+ |z —yl? = 2(||z||® + |y||?) for all vectors z,y. The following

functional equation which was motivated by these equations

(1.1) Qz +y) + Qz —y) =2Q(z) +2Q(y)

is called a quadratic functional equation, and every solution of the equation (1.1) is
said to be a quadratic mapping. It is well known that a mapping () between real
vector spaces Ey, E satisfies the equation (1.1) if and only if there exists a unique
symmetric biadditive mapping B : E} X Ey — E3 such that Q(z) = B(z,z) for all
z [1]. The quadratic functional equation and several other functional equations are
useful to characterize inner product spaces [2, 11, 15]. A stability theorem for the
quadratic functional equation was proved by a lot of authors [4, 12, 14] and there
are many interesting results concerning this problem [7, 8, 13].

In 1983 F. Skof [16] was the first author to solve the Ulam problem for additive
mappings on a restricted domain. In 1998 S. Jung [9] investigated the Hyers-Ulam
stability for additive and quadratic mappings on restricted domains. In [10], J.M.
Rassias proved that if for given r > 0 and € > 0 a mapping f satisfies

llg(z + y) + q(z — y) — 29(z) — 2q(y)|| < €

for all z,y € X with ||z|| + ||y|| > 7, then there exists a unique quadratic mapping
@ : X — Y such that

/(@) ~ Q) < 5

for all z € X. Now we are going to extend the above result to more generalized equa-

tions with (d + 1)-variables. For this purpose, we consider the following functional

equations,
d+1 d+1
(1.2) f(in) + Y flmi-z) = @d+1)D fx),
i=1 1<i<j<d+1 i=1
d+1
(1.3) > U@i+a)+f@-z)) = 2d) (=)
1<i<j<d+1 i=1
for all (d + 1)-variables =1, ,z4+1 € E1, where d > 1 is a natural number. As a

special case, these equations reduce to the equation (1.1) in the case d = 1. In this
paper, it will be verified that the general solutions of the above functional equations
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are quadratic mappings in the class of functions between vector spaces. Besides
we establish new theorems about the Ulam stability for the general equations and
apply our results to the asymptotic behavior of functional equations on restricted

domains.

2. GENERAL SOLUTION OF EQ.(1.2) AND (1.3)

Let Ey and E, be vector spaces. It follows that the equation (1.1) implies the
equation (1.2) as follows.

Lemma 1. A mapping f . Ey — E5 satisfies the functional equation (1.2) or (1.8)
if and only if the mapping f is quadratic.

Proof. We first assume that f is a solution of the functional equation (1.2) or (1.3).
Set z; :=01in (1.2) or (1.3) foralli =1, ,d+1 toget f(0) = 0. Putting x; := 0 in
(1.2) or (1.3) foralli =3, ,d+1, weget f(z1+x2)+ f(z1—z2) = 2[f(z1) + f(z2)]
for all 1,25 € E;.

Conversely, assume that the mapping f satisfies the functional equation (1.1).
Then there exists a unique symmetric biadditive mapping B : E; X E; — E; such
that Q(z) = B(z, z) for all z. Hence it is obvious that f satisfies the equation (1.2).

On the other hand, we assume that f satisfies the equation

d
(2.1) > f@i+a) + fl@—z)] =2d-1))_ f(=z:)
1<i<j<d i=1
for all d-variables x1, ,Zq4 € Ey. Then we get
> @i+ ) + fmi - xj)]
1<i<j<d+1 ’

d
= Y [fl@i+z)+ flzi—z)) + Z[f(xi + z4t1) + f(@i — Tat1)]

1<i<j<d i=1
d d
22)  =2d-1)) flz:) + Y _2f(x:) + 2f (zas1)]
=1 =1
d+1

= 2d Z f(x,)
i=1

for all (d + 1)-variables z;, yZd+1 € Ey. Thus f satisfies the equation (1.3). This
completes the proof. O



240 Ick-SooN CHANG™ AND HARK-MAHN KIM ™"

3. APPROXIMATELY QUADRATIC MAPPINGS

From now on, let X be a normed space and Y a Banach space unless we give
any specific reference. Let R™ denote the set of all nonnegative real numbers and
d a positive integer with d > 1. Now before taking up the main subject, given
f:X — Y, we define the difference operator Df : X¢*! — Y by

Ef(l'l,l'Q, )xd-f-l)
d+1 d+1
:=f(21i>+ Yo f@i—z) - @+ fl=)
i=1 1<i<j<d+1 i=1
for all (d+1)-variables z1, ,Zd+1 € X, which acts as a perturbation of the equation

(1.2).
Theorem 1. Suppose that a mapping f: X — Y satisfies

(3.1) IEf(z1, 22, zar)|| <elzr,  zd41)

for all (d + 1)-variables x1, ,zqr1 € X, and that € : X4 — RY is a mapping

such that the series

i e(2tz1, ,2%qq1)
%
i=0 2

converges for all x1, ,Zar1 € X. Then there exists a unique quadratic mapping
Q : X — Y which satisfies the equation (1.2) and the inequality
d-1

i e(2ix, 2’x ‘o ,0)

2 -
62 |+ =220 -0

<!
=1

for all x € X. The mapping Q is defined by

(3.3) | Q(z) = lim f(2z)

n—oo Q2n
for all x € X. Moreover, if f is measurable or f(tx) is continuous int € R for each

fized x € X, then the mapping ) is homogeneous of degree 2 over R.

Proof. If we take (z1,z2,0, ,0) instead of (1, ,z4+1) in (3.1), we obtain

[#6@r+ 2+ @ = a)+ (5 1) £0) - 21(a)

~2f(22) — @+ 1)(d = DFO)]| < e(m,22,0, ,0),
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which can be rewritten in the form

(3-4) llg(zr + 22) + qz1 — 22) — 2q(z1) — 29(22)|| < &(71,22,0, ,0),

for all 1,22 € X, where ¢(z) := f(z) + (—‘54—)@4_1)&,:5 € X.

Now applying a standard procedure of direct method (see [3, 5, 7]) to the last
inequality (3.4), we see that there exists a unique quadratic mapping @ : X — Y
which satisfies the equation (1.2) and the inequality

d—1

i ir,2iz,0, ,0)

9224

9(0) _
3

q(z) -

Aklv—l

for all z € X.

The proof of the last assertion in the theorem follows by the same reasoning as
the proof of [4]. O

Theorem 2. Suppose that a mapping f : X — Y satisfies
|lEf(:1:1’x27 ,17d+1)|| SE((L‘I’ )md-i-l)

for all (d + 1)-variables z1, ,zqy1 € X, and that € : X1 — R is a mapping

such that the series

> T Td
; 1 +1
;4%("27’ )i )

converges for all z,, ,Za+1 € X. Then there exists a unique quadratic mapping
Q : X — Y which satisfies the equation (1.2) and the inequality

d—1
r X /—M)

1
@) - Qi < 3 34 (3500 .0
for all z € X. The mapping Q 1is defined by

Q(z) = lim 4"f (2%)

n—eco
for all x € X. Moreover, if f is measurable or f(tz) is continuous in t € R for each

fized x € X, then the mapping Q is homogeneous of degree 2 over R.

Note that one has f(0) = 0 in the above theorem because €(0, ,0) = 0 by the
convergence of the series.
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Given a mapping f : X — Y, we define the difference operator Df : X411 - Y
by

d+1

Df(I],.’L‘z, a$d+1) = Z Lﬂ f(x’t) - QdZ f(xl)
i=1

1<i<j<d+1 \ z;

for all (d+1)-variables z;, ,Td+1 € X, which acts as a perturbation of the equation
(1.3). Furthermore, we are going to establish another theorems about the Ulam
stability problem of the equation (1.3) as follows.

Theorem 3. Suppose that a mapping f: X — Y satisfies

(3.5) IDf(x1, 22, zap)ll <1, Za41)

for all (d + 1)-variables T1, ,z411 € X, and that € : X Rt s a mapping

such that the series

i e(2'z1, ,2'w44)
2
=0 2
converges for all xy, ,Zd+1 € X. Then there ezists a unique quadratic mapping
Q : X — Y which satisfies the equation (1.3) and the inequality

d? +d - 3)f(0)
3

(36) Hf(x) 4 Q)

1 <X (2, 2x)
< 4 Z 921
i=0
for all z € X, where a mapping ¢ : X2 =Y is given by

1
(3.7) ¢(x,y):=min{s(x,0, ,0,737,0 ,0)’2§isd+1}.

The mapping Q is defined by
' . f@™x
Q) = Jin 50

for all z € X. Moreover, if f is measurable or f(tz) is continuous int € R for each
fized x € X, then the mapping @) is homogeneous of degree 2 over R.
i
Proof. If we take (w,O, 0,7y 1,0, ,0) instead of (z1, ,z441) in (3.5), we
obtain
If(z +y) + fz —y) = 2f(z) — 2f(y) — (& + d~ 2)£(0)|

< E(.’L‘,O, ,O,?, 0, ,O)
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for all z,y € X, and all 4 with 2 < i < d + 1, which can be written in the form

(3.8) lg(z +y) + q(z — y) - 2[g(z) + q(y)] — ¢(O)|| < é(z,y)

for all z,y € X, where a mapping ¢ : X — Y is defined by g(z) := f(a:)-{—ﬁﬂi—g:i—)m
and a mapping ¢ : X2 — Y is given by (3.7). Taking y := z in (3.8), we get

1

(3.9) “ q(ix) —q(z)

for all z € X. Now applying a standard procedure of direct method [3, 7] to the last
inequality (3.9), we see that there exists a unique quadratic mapping @ : X — Y
which satisfies the equation (1.3) and the inequality

1 < (22, 2°z)
o) - @ < 33 22

for all z € X. 0
Theorem 4. Suppose that a mapping f : X — Y satisfies

”Df(l‘l,l'z, ,.’L‘d+1)“ S 6‘(1‘1, 7xd+1)

for all (d + 1)-variables 1, ,Tqy1 € X, and that € : X! — R* is a mapping
such that the series

> T x
; 1 d+1
;415 (? ' oi )

converges for all x1, 1 Zd+1 € X. Then there erists a unique quadratic mapping
Q@ : X — Y which satisfies the equation (1.3) and the inequality

I~ ;, (2 =
1@ - Q@I < 334 (5. 5)

for all z € X, where a mapping ¢ : X% — 'Y is given by (3.7). The mapping Q is
defined by
(T
Q(z) = lim 4™f (—)

n—00 on

for all z € X. Moreover, if f is measurable or f(tx) is continuous int € R for each

fized z € X, then the mapping Q is homogeneous of degree 2 over R.
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4. APPROXIMATELY QUADRATIC MAPPINGS ON RESTRICTED DOMAINS

In this section we are going to investigate the Hyers-Ulam stability problem for the
equations (1.2) and (1.3) on a restricted domain. As results we have an asymptotic

property of the mappings concerning the equations (1.2) and (1.3).

Theorem 5. Let r > 0 be fized. Suppose that there ezists a nonnegative real number

€ for which a mapping f : X — Y satisfies

(41) HEf(:L‘lax% 7$d+1)” <e
for all (d + 1)-variables 1, ,xq41 € X with Zdﬂ |zi|| > r. Then there ezists
a unique quadratic mapping @ : X — Y which satisfies the equation (1.2) and the
inequality

d+4)(d-1)f(0 3e
(12) @)+ LHAEZDIO )| < 2
forallz € X.

Proof. Taking (z1, ,zq41) as(z,y,0, ,0)in (4.1) with [|z||+|y]| > r, we obtain
by the same way as (3.4)

(4.3) llo(z +v) + alz — ) — 2¢(z) — 2¢(v)|| < e,

. . (d+4)(d—1)£(0
for all z,y € X with ||z|| + |ly|| > r, where q(z) := f(z) + ~—)4—)(—l

we have ||q(0)|| < £ by setting y := 0 and z :=t with ||t|| > r in (4.3). Now, assume
llz]l + llyll < r. And choose a t € X with ||t]| > 2r. Then it holds clearly

. Specially,

lzxt) =7 llyxt] =7 and |2t + |lz+y| =7
Therefore from (4.3) and the following functional identity

2[g(z +y) + a(z — y) — 2q(z) — 24(y) — 9(0)]

= gz +y +2t) + g(z ~ y) — 2q(z + 1) — 2g(y +1)]

+g(z +y—2t) +q(z — y) — 29(z — t) — 29(y — t)]

+[—glz+y+2t) — qlz +y— 2t) + 2q(z + y) + 2q(2t)]
+[2q (x +1t) +2¢(x —t) — 4q(z) — 4q(t)]
+[2q(y +t) + 2¢(y — t) — 4q(y) — 49(t)]
+[ — 2q(2t) — 2¢(0) + 4q(t) + 44(t)},
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we get

9¢
(4.4) lg(z +v) + a(e - y) - 2q(<) - 24(y) - 9(O)|| <
for all z,y € X with ||z|| + |ly]| < r. Consequently, the last functional inequality

holds for all z,4 € X in view of (4.3) and (4.4). Now letting y := x in (4.4), we

obtain
lg(2z) — 4¢(z)]| < 97

Now applying a standard procedure of direct method [5, 7] to the last inequality,

we see that there exists a unique quadratic mapping @ : X — Y which satisfies the
equation (1.2) and the inequality

llg(z) — Q)| <
for all z € X. O

3e
2

Theorem 6. Let v > 0 be fized. Suppose that there exists a nonnegative real number

¢ for which a mapping f : X — Y satisfies

(4.5) IDf(z1,22, ,zar1)ll <€

for all (d + 1)-variables 1, ,x441 € X with E;i;l |lz;|| = r. Then there exists
a unique quadratic mapping Q : X — Y which satisfies the equation (1.3) and the
inequality

(46) ‘
forallx € X.

(d? +d —2)f(0)
2

L
-2

fz) + - Q(x)

We note that if we define
Sur1 ={(z1, ,zay1) € Xz <nVi=1, ,d+1}
for some fixed r > 0, then we have

d+1
{(-’El, (zay1) € XY |l > (d+ 1)"‘} C XHN\ Sgq1.

i=1
Thus the following corollary is an immediate consequence of Theorem 5 and
Theorem 6.

Corollary 1. If a mapping f : X — Y satisfies the functional inequality (4.1)
((4.5), respectively) for all (x1, ,xay1) € X4\ Sy41, then there exists a unique
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quadratic mapping Q : X — Y which satisfies the equation (1.2) ((1.3), respectively))
and the inequality (4.2) ((4.6), respectively).

From Theorem 5, we have the following corollary concerning an asymptotic prop-

erty of quadratic mappings.
Corollary 2. A mapping f: X — Y with f(0) = 0 is quadratic if and only if

etther lEf(z1, ,zar)ll — 0,
or IDf(z1, ,Z441)] —0

as S H i)l — oo

Proof. According to our asymptotic condition, there is a sequence (g,,) decreasing

to zero such that |[Ef(zy, ,Z4+1)|| < & for all (d+1)-variables 1, 2441 € X

with Zd“ ||z:|| > m. Hence, it follows from Theorem 5 that there exists a unique

quadratic mapping Q,, : X — Y which satisfies the equation (1.2) and the inequality
3em

1£(z) = Qm(2) = =~

for all z € X. Let m and [ be positive integers with m > [. Then, we obtain

/@) = @@l < ¥m < 2

< =
2
for all x € X. The uniqueness of J; implies that ,, = Q; for all m, !, and so
3em
I f(z) — Qu)ll < —=

for all z € X. By letting m — oo, we conclude that f is itself quadratic.

The reverse assertion is trivial. O
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