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MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE
INEQUALITIES

BYUNG-S00 LEE

ABSTRACT. This paper introduces a class of multivalued mixed quasi-variational-
like inequalities and shows the existence of solutions to the class of quasi-variational-
like inequalities in reflexive Banach spaces.

1. INTRODUCTION AND PRELIMINARIES

The importance of applications of variational inequalities to many areas, for ex-
amples, optimization problems, differential equations, equilibrium problems in non-
linear analysis is known in many researches (see {1, 5, 10, 11] and references therein).
Parida and Sen [7] firstly posed variational-like inequalities and Aubin and Ekeland
[1] also firstly introduced quasi-variational inequalities. Recently, Verma [9] in-
torduced a class of monotone nonlinear variational inequalities and considered the
existence of solutions. Very recently, Cho et al. [2], Fang et al. [4] and Huang
et al. [6] generalized and improved the results of Verma [9] to a class of nonlinear
quasi-variational-like inequalities.

This paper introduces a new class of generalized quasi-variational-like inequalities
and, generalizes and improves the results of Cho et al. [2]. In the proof, some wrong
part of the proof in [2] is corrected.

Let X be a real Banach space with dual space X* and K a nonempty convex closed
subset of X. Denote {£,z) = £(z), for all £ € X* and x € X. Let 5,7 : K — 2%’
be two multivalued mappings, N : X* x X* — X* and g : K — X™* be mappings.

Recently, the following nonlinear mixed quasi-variational-like inequality was stud-
ied by Cho et al. [2].
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For any ¢ € X*, find v € K such that
(1.1) sup (N(z,y)—f,v—u)+ f(v)— f(u) > 0, forallve K.
z€S(u), yeT (u) :
Also, recently the following quasi-variational-like inequality was considered by
Fang et al. [4].
For any ¢ € X*, find u € K such that
(1.2) sup (z—y—{n(v,u))+ f(v)— f(u) > 0, forallve K.
z€S(u), yeT (u)
For single-valued mappings S and T, the following quasi-variational-like inequal-
ity was studied by Huang et al. [6].
For any ¢ € X*, find u € K such that

(1.3) (N(S(u), T(w)) = £,n(v,u)) + f(v) — f(u) > 0, forallv e K.

In this paper, we consider the following generalized quasi-variational-like inequal-
ity;

For any ¢ € X*, find u € K such that
(1.4) sup  {(g(u) + N(z,9)) — ¢ G(v) — G(u)) + f(v) — f(u) = 0,

z€S(u), yeT(u)

for all v € K, where G : K — K is a mapping.

Definition 1.1. A mapping S : K(C X) — 2%" is said to be G-p-p-monotone
with respect to the first argument of a mapping N : X* x X* — X™* if there exist a
function ¢ : [0,4+00) — [0,+00), a mapping G : K — K and a constant p > 1 such
that

(L5)  (N(z,-) = N(y,),G(u) — G(v)) = ¢(|G(u) - Gv))IG(u) — G)|P,

for all u,v € K, z € S(u) and y € S(v).

Definition 1.2. A mapping T : K(C X) — 2%” is said to be G-t-p-monotone with
respect to the second argument of a mapping N : X* x X* — X* if there exist a
function % : [0, +00) — [0,+00), a mapping G : K — K and a constant p > 1 such
that

(16) (N(,z) - N(,y),G(u) - G(v)) = —¥(|G(u) - GW)[) [G(w) — GW)IP,
for all u,v € K, z € T(u) and y € T(v).

Definition 1.3. A mapping g : K(C X) — X™* is said to be G-¢-p-relaxed Lips-
chitzian if there exist a function ¢ : [0, +00) — [0, +00), a mapping G : K — K and
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a constant p > 1 such that
(1.7) '
(9(v) = g(u),G(v) = G(u)) = ¢(IG(v) — GW)I) IG(v) — GW)|P, for all u,v€ K.

Definition 1.4. Let X and Y be topological spaces. A mapping F: X — 2V is
said to be lower semi-continuous at € X if for any y € F(z) and for any net {zq}
in X converging to x, there exists a subnet {zg} C {zo} and y5 € F(z3) for each 3
such that {yg} converging to y. '

Definition 1.5 ([8]). A mapping g : K — X* is said to be hemi-continuous if for
all u,v,z € K, the mapping t — (g(u + tv), z) is continuous on [0,1]. A mapping
T : K — 2X” is said to be lower hemi-continuous if for all u, v, z € K, the multivalued
mapping

E— (T(u+ t0), 2)

is lower semi-continuous on [0,1].

2. MAIN RESULTS

Now, we consider two kinds of variational inequalities, whose solution sets are
the same.

Theorem 2.1. Let X be a reflerive Banach space, X* be its dual and K be a
nonempty convex closed subset of X, let g : K — X* be a hemi-continuous map-
ping satisfying (1.7) and also let S and T : K — 2X* be lower semi-continuous
multivalued mappings satisfying (1.5) and (1.6), respectively, where for functions
0, %, ¢ : [0, +00) — [0, +00) satisfying @(t) + ¢(t) > Y(t) for allt >0, p+ ¢~ is
bounded in [0,8] for some § > 0. In addition, suppose that G : K — K is an affine
mapping, f : K — RU {400} is a proper convez functional and N : X* x X* — X*
is continuous with respect to the weak* topology of X. Let a multivalued mapping
v {N(z,w) € X*:z € S(v),w € T(v)} be lower hemi-continuous. Then for any
L€ X*, u € K is a solution of problem (1.4) if and only if u € K is a solution of
the following problem: Find u € K such that

((g(v) + N(z,w)) = £,G(v) — G(w)) + f(v) = f(u)
(2.1) > (p(IG(v) = GW)I) = »(IG(v) — G(w)})
+¢(IG(v) — G)NG(v) — G(w)|P
forallve K, z € S(v) and w € T(v).
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Proof. Suppose that the problem (1.4) holds. Since mappings S, T and g satisfy (1.5)
(1.6) and (1.7), respectively, then for all u,v € K, x € S(u), 2 € S(v), y € T(u) and
w € T'(v), we have
((9(v) + N(z,w)) — £,G(v) — G(u)) + f(v) — f(u)
= (=4, G(v) - G(u)) + (9(v), G(v) — G(w)) + (N(z,w), G(v) — G(u))
+ f(v) — f(u)
= (=£,G(v) — G(u)) — (N(z,w) — N(z,w),G(v) — G(u))
= (N(z,y) = N(z,w), G(v) — G(u)) + (N(z,9), G(v) — G(u))
+ (9(v) = g(u), G(v) — G(u)) + (g(u), G(v) — G(u)) + f(v) — f(u)
= (=£,G(v) = G(u)) + (N(z,w) = N(z,w), G(v) = G(v))
+ (N(z,y) = N(z,w),G(u) — G(v)) + (N(z,y),G(v) — G(u))
+(9(v) = g(u), G(v) — G(u)) + (g(u), G(v) = G(u)) + f(v) — f(u)
2 ((9(u) + N(z,9)) — £,G(v) — G(u)) + f(v) — fu) + (p(IG(v) — G(u)]])
—Y(IG(v) = G(W)]) + ¢(IG(v) — G(W)INIG () — Gu)|P.
Put A = ((g(v) + N(z,w)) — £,G(v) - G(w)) + f(v) = f(u)
B = ((g(u) + N(z,y)) — £,G(v) = G(u)) + f(v) = f(v)
C=(p—9¢+)Gw) - Gu)DIG@) - Gu)|?.

Taking suprema on both sides of the following inequality;

A>B+C,
we have
A= sup A > sup (B+C) = sup B+C.
z€S(u), yeT (u) zeS(u), yeT(u) z€S(u),yeT (u)

Since sup B > Oforallve K from (1.4), A > C. Hence
z€S(u), yeT(u)

((g(v) + N(z,w)) — £,G(v) — G(w)) + f(v) — f(u)
> (p(1G(v) = G)ll) — ¥(IG(v) = GWI) + ¢(IG(v) = G(W)I) IG(v) — G(u)|P
forallv e K, z € S(v) and w € T(v).
Conversely, suppose that (2.1) holds, without loss of generality, choose a point
v € K such that f(v) < 400 and so f(u) < +oo. Letting v, = (1 = 2)u+ 1 v for
n € N, we have v, € K.
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For any z € S(u) and y € T'(u), since the mapping v — {N(z,w) € X*: z €
S(v),w € T'(v)} is lower hemi-continuous, the mapping v — g(v) is hemi-continuous
and v, — u as n — oo, there exists a subsequence {v,;} C {v,} and there are
Zn; € S(Vn,), Wn; € T(vn,) such that for any 7 € X

(2.2) Zn; = T, Wp; = Y, (9(n;) + N(zn,, wn;),7) — (9(u) + N(z,y),7)

as j — oo. By the affinity of G, G(vy) = (1 — 1)G(u) + L G(vy,) for all n € N, hence
it follows from (2.1) that

{9(vn;) + N(zn;;wn;) = €, G(un,) — G(w)) + f(vn,) — flu)
> (o(IG(vn;) = G)) — $(IG(vn;) — G(w)l])
= #(1G(vn;) = G G (vn;) — G

- (7—}) (v (s160) - 61 ) -v (-j—jumv) -Gl
(23) ~0(160) - 6wl ) 166) - Gl

. . —(1_ 1 1
Since f is convex and vy, = (1 e Ju + 5 Vs

$) = £ = (1= ) £+ -0 - )

7

> n;f ((1 - %)u—%%v) —n; fu)
= 15 f(Vn;) — 15 f (u)
= n;(f(vy,;) — f(w)),

from (2.3), it follows that
((g(vnj) + N(znj7w’nj)) - £, G(Un,-) - Gu) + f(v) = f(u)
1\?! 1 1
> (n—) (90 (n—jucw) - G(u)ll) Y (-,,;J—,ua(v) - G(u)ﬂ)
1
24 46 (n—jlln(v, u>n)) IGw) - G)|P.
It follows from (2.2) and (2.4) that

((g(w) + N(z,y)) = £, G(v) = G(u)) + f(v) = f(u) 2 0

for all v € K, x € S(u), y € T(u). O
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From Theorem 2.1, we have the following theorem, the main result of Cho et al.
[2] as a corollary.

Corollary 2.2 ([2]). Let' G be the identity mapping, g =0, ¢ =0 and N(z,y) =
z—vy forz,y € X* in Theorem 2.1. Then for any £ € X*, u € K 1is a solution of
sup  (N(z,y)—lv—u)+ f(v)— flu) >0 forallve K
z€S(u),yeT (u)

if and only if u € K is a solution of
(N(z,w) = &,v —u) + f(v) — f(u) = (¢llv = ull) = ¥(llv —ul)]v - ul?
for allve K, z€ S(v) and w € T(v).
For the next result, we need the following KKM mapping and Fan-KKM Theorem.

Definition 2.1 ({10]). Let X be a topological vector space. A mapping F': X — 2%
is called a KKM mapping if for any {z1,z2, ,zn,} C X,

n
co{zy,x2, ,xn}C UF(a:,)

i=1

Fan-KKM Theorem 2.3 ([3]). Let K be a nonempty subset of a topological vector
space X and F : K — 2X be a KKM-mapping. If F(x) is closed in'Y for every x
in K and there exists at least a point xg € K such that F(xgy) is compact, then

() F(z) # 0.

zeK
Theorem 2.4. Let X be a real reflexive Banach space, X* be its dual space and K
be a nonempty bounded closed conver subset of X. Let S, T, g, N, G, v, ¥ and
¢ be the same as those in Theorem 2.1. Suppose that the mappings ¢ — ¥ + ¢, 1
are continuous and f : K — R U {400} is a proper convex lower semi-continuous.
Then the problem (1.4) has a solution. Moreover if G is injective, then the solution

1S unique.

Proof. We first prove the existence of a solution of the problem (1.4). Define two
multivalued mappings F', H : K — 2X by, for any £ € X*,
F(v)={u€ K:((g(u) + N(z,y)) —£,G(v) — G(u)) + f(v) — f(u) 2 0,
for some = € S(u), some y € T(u)}
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for all v € K, and

H(v) ={u € K : {(g(v) + N(z,w)) = £,G(v) = G(w)) + f(v) — f(u)
> (p(IG() = Gw)) = ¥(IG(v) - GW)l)
+¢(IIG(v) = G 1G(v) = Gw)|P, for all z € 5(v), w e T(v)}
forallve K. |

We show that F' is a KKM-mapping. Assume that F' is not a KKM-mapping.
Then there exists {vy,v2, ,v,} CKandt; >0,i=1,2, ,n,suchthat

n - n n
Zti =1, v = thi =4 UF(Ul)
i=1 i=1 i=1
For any z € S(u) and w € T(u), by the definition of F', we have
((9(v) + N(z,w)) = £,G(vi) = G(v)) + f(w:) = f(v) <O
fori=1,2, ,n. It follows that

0={(g9(v) + N(z,w)) = £,G(v) = G(v))

= ((9(v) + N(z,w)) - £,G( 3 tn) - G(v)
=1

n

=Y ti{(9(v) + N(z,w)) — £,G(v;) = G(v)) < Y t:(f(v) — f(w:))
=1

i=1
= f(v) =) tif(w)

i=1
< flv)—f(v) =0,

which is a contradiction. This implies that F' is a KKM-mapping. Now we prove
that F(v) C H(v) for all v € K. Let u € F(v), then there exist z € S(u), y € T'(u)
such that

((g(u) + N(z,y)) — £,G(v) = G(u)) + f(v) — f(u) = 0.
Since the mappings g, S and T satisfy (1.7), (1.5) and (1.6) respectively, we have
((g(v) + N(z,w)) = £,G(v) = G(u)) + f(v) - f(v)
= (—¢,G(v) — G(u)) + (N(z,w) — N(z,w),G(u) — G(v))
+ (N(z,y) — N(z,w),G(u) — G(v)) + (N(z,y), G(v) — G(u))
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+(9(v) — g(u), G(v) — G(u)) + (g(v), G(v) — G(w)) + f(v) = f(u)

((IG() = Gu)ll) = %(IG(v) = G(u)ll) + ¢(I|G(v) = GW)IDI G(v) = G(u)|P
+((9(w) + N(z,y) = £,G(v) = G(u)) + f(v) = f(u)

2 (p(llG(v) = GW]) - (IIG(v) GW)l) + ¢(IG(v) = G IG(v) - G|,

for all v € K, z € S(v) and w € T'(v). This implies that v € H(v) and so H is also
a KKM-mapping.

On the other hand, from the assumption, it follows that H(v) is weakly closed for
all v € K. Since K is bounded closed convex, we know that K is weakly compact
and so H(v) is weakly compact in K for all v € K. It follows from Fan-KKM

Theorem that
([ H@) # 0
veK

Hence for any £ € X* there exists a point ug € K such that

((g(v) + N(z,w)) = £,G(v) — G(uo)) + f(v) = f(uo)
> (p(IG(w) — G(uo)ll) = ¥(IG(v) — G(uo)l})
+ ¢(I1G(v) — G(uo)I)) |G(v) — G(uo)|P,
for all z € S(v), w € T'(v) for all v € K. Thus

{(g(uo) — N(z,y)) — £, G(v) = G(uo)) + f(v) — f(uo) 20,

for all v € K, for some z € S(v) and for some y € T'(v), which shows that ug is a
solution of (1.4).
Let uj and ug € K be solutions of the problem (1.4). Since

ki(v) := sup {(g(u1)+ N(z,y)) —£,G(v) — G(u1)) + f(v) — f(u1) > 0, for each

z€S(uy)
yeT(uy)

fixed v € K and
ko (v) := s;p )((g(ug) + N(z,y)) — £,G(v) — G(ua)) + f(v) — f(uz) > 0 for each
z€S5(ug
y€T(ug)
fixed v € K, by the definition of supremum, for any positive number ¢, there exist

z1 € S(u1) and y; € T(u;1) such that
(2.5) kai(v) —e < {(g(w1) + N(z1,91)) — £,G(v) — G(w1)) + f(v) — f(w1) < ka(v)
and, there exist zo €'S(uz2) and y2 € T(u2) such that

(2.6) ka(v) — e < ((g(uz) + N(z2,y2)) — £, G(v) — G(ua)) + f(v) = fluz) < k2(v)
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Setting v = ug in (2.5) and v = u; in (2.6) and adding, we have

ki(ug) + ka(ur) — 26 < (g(wa) ~ g(ua) + N(z1,1) — N(x2,2), G(uz) — G(wr))
» < kl(UQ) + k‘g(’ul).

Since ¢ is arbitrary,
(2.7) (g(u1) —g(u2)+ N(z1,y1) — N(22,¥2), G(u2) — G(u1)) = k1 (u2) +kz(u1) = 0.
By (1.5), (1.6) and (1.7), we obtain

{g(u1) — g(u2) + N(z1,11) — N(z2,%2), G(u2) — G(w))
= (g(u1) — g(u2), G(uz) — G(w1)) + (N(z1,y1) — N(z2,11), G(uz) — G(u1))
+ (N(zg,y1) — N(z2,92), G(uz) — G(w1))
—(g(u1) = g(u2), G(u1) — G(u2)) — (N(z1,91) — N(z2,91), G(u1) — G(uz))
~ (N{(z2,91) — N(22,42), G(u1) — G(u2))
(=8(iG(u1) — G(u)ll) — @([|G(u1) — G(u2)ll)
+¢([G(u1) — Glu2) D) G(ur) — G(ua) [P
—(¢(I G(u1) — G(u2)]) + »(IG(u1) — G(u2)l))
(2.8) = P(lG(u1) — G(u2)|)) [|G(ur) — G(uz)|P-
Due to the inequality @(t) + @(t) > ¥(t) for all ¢ > 0, it follows from (2.7) and

(2.8) that ||G(uy) — G(us)||? = 0.
Since G is injective, u; = uz. Hence (1.4) has a unique solution. a0

<

Remark 2.1. Theorem 2.4 also improves and extends Theorem 2.4 of [2].
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