SEMIPRIME NEAR-RINGS WITH ORTHOGONAL DERIVATIONS

KYOO-HONG PARK* AND YONG-SOO JUNG**

ABSTRACT. M. Brešar and J. Vukman obtained some results concerning orthogonal derivations in semiprime rings which are related to the result that is well-known to a theorem of Posner for the product of two derivations in prime rings. In this paper, we present orthogonal generalized derivations in semiprime near-rings.

1. Introduction

A non-empty set \mathcal{N} with two binary operations + (addition) and · (multiplication) is called a *near-ring* if it satisfies the following axioms:

- i) $(\mathcal{N}, +)$ is a group (not necessarily abelian),
- ii) (\mathcal{N}, \cdot) is a semigroup,
- iii) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in \mathcal{N}$.

Precisely speaking, it is a *left near-ring* because it satisfies the left distributive law. We will use the word *near-ring* to mean *left near-ring*.

An additive map $d: \mathcal{N} \to \mathcal{N}$ is called a derivation if the Leibniz rule

$$d(xy) = d(x)y + xd(y)$$

holds for all $x,y\in\mathcal{N}$. Furthermore, M. Brešar [2] introduced the notion of a generalized derivation. An additive map $f:\mathcal{N}\to\mathcal{N}$ is said to be a *generalized derivation* associated with a derivation d if there exists a derivation $d:\mathcal{N}\to\mathcal{N}$ such that the relation

$$f(xy) = f(x)y + xd(y)$$

holds for all $x, y \in \mathcal{N}$. Hence the concept of a generalized derivation covers both the concepts of a derivation and of a left centralizer (or left multiplier), that is, an

Received by the editors July 10, 2006 and, in revised form, October 20, 2006.

^{*}Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. 16W25.

Key words and phrases. derivation, orthogonal derivation, generalized derivation, orthogonal generalized derivation, prime near-ring, semiprime near-ring.

additive map f satisfying f(xy) = f(x)y for all $x, y \in \mathcal{N}$. This notion is found in P. Ribenboim [8], where some module structure of these higher generalized derivations was treated. Other properties of generalized derivations were given by B. Hivala [4], T. K. Lee [5] and A. Nakajima [6].

Throughout this paper, \mathcal{N} will represent a zero-symmetric near-ring. Recall that \mathcal{N} is semiprime if $x\mathcal{N}x = \{0\}$ implies x = 0 and is prime if $x\mathcal{N}y = \{0\}$ implies x = 0 or y = 0.

As for terminologies concerning near-rings used here without mention, we refer to G. Pilz [7].

Let R be a semiprime ring. Derivations d and δ in R is called orthogonal if the relation

$$d(x)R\delta(y) = 0 = \delta(y)Rd(x)$$

holds for all $x, y \in R$. M. Brešar and J. Vukman [3] introduced the notion of orthogonality for two derivations in a semiprime ring and proved some results on orthogonal derivations. N. Argaç et. al. [1] extended their results to orthogonal generalized derivations. In this paper, our purpose is to present orthogonal generalized derivations in semiprime near-rings.

2. Orthogonality of Generalized Derivations in Semiprime Near-Rings

Definition 1. Let f and g be generalized derivations of \mathcal{N} associated with derivations d and δ , respectively. f and g are called orthogonal if the relation

$$f(x)\mathcal{N}g(y) = 0 = g(y)\mathcal{N}f(x)$$

holds for all $x, y \in \mathcal{N}$.

Example 1. Let d and δ be two derivations of \mathcal{N} and $\mathcal{S} = \mathcal{N} \oplus \mathcal{N}$. Then the maps d_1 and δ_2 on the near-ring \mathcal{S} which are defined by

$$d_1(x,y) = (d(x),0)$$
 and $\delta_2(x,y) = (0,\delta(y))$ for all $x,y \in \mathcal{N}$

are derivations of S. Assume that f and g be generalized derivations of N associated with derivations d and δ , respectively. Defining

$$f_1(x,y) = (f(x), 0)$$
 and $g_2(x,y) = (0, g(y))$ for all $x, y \in \mathcal{N}$,

we see that f_1 and g_2 be generalized derivations of S associated with derivations d_1 and δ_2 , respectively such that f_1 and g_2 are orthogonal.

We start our investigation with the following lemma corresponding to [3, Lemma 1].

Lemma 1. Let \mathcal{N} be a 2-torsion free semiprime near-ring and $a, b \in \mathcal{N}$. Then the following conditions are equivalent:

- (i) axb = 0 for all $x \in \mathcal{N}$.
- (ii) bxa = 0 for all $x \in \mathcal{N}$.
- (iii) axb + bxa = 0 for all $x \in \mathcal{N}$.

If one of the three conditions is fulfilled, then ab = ba = 0.

Proof. Suppose that $a\mathcal{N}b = 0$. Then $(b\mathcal{N}a)\mathcal{N}(b\mathcal{N}a) = 0$ as well, hence $b\mathcal{N}a = 0$ by the semiprimeness of \mathcal{N} . Thus (i) implies (ii). In a similar fashion we see that (ii) implies (i). Hence (ii) implies (iii).

Let us prove that (iii) implies (i). Assume that axb + bxa = 0 for all $x \in \mathcal{N}$. Using this identity, we obtain

$$(ayb)zayb = -(byaza)yb = ay(azb)yb = -aybzayb,$$

where $y, z \in \mathcal{N}$. Thus 2(ayb)z(ayb) = 0 which yields ayb = 0 since \mathcal{N} is 2-torsion-free and semiprime.

Finally, if aNb = 0 then we also have abNab = 0 and baNba = 0, and therefore ab = 0 and ba = 0. The proof of the lemma is completed.

Lemma 2. Let f be a generalized derivation of near-ring \mathcal{N} associated with a derivation d of \mathcal{N} . Then we have

(i)
$$(f(x)y + xd(y))z = f(x)yz + xd(y)z$$
 for all $x, y, z \in \mathcal{N}$.

and

(ii)
$$(d(x)y + xd(y))z = d(x)yz + xd(y)z$$
 for all $x, y, z \in \mathcal{N}$.

Proof. (i). For all $x, y, z \in \mathcal{N}$, we get

$$f((xy)z) = f(xy)z + xyd(z)$$
$$= (f(x)y + xd(y))z + xyd(z).$$

On the other hand,

$$f(x(yz)) = f(x)yz + xd(yz)$$

= $f(x)yz + xd(y)z + xyd(z)$.

For these two expressions of f(xyz), we obtain

$$(f(x)y + xd(y))z = f(x)yz + xd(y)z$$

for all $x, y, z \in \mathcal{N}$.

(ii). It is proved by the same argument as (i).

Lemma 3. Let \mathcal{N} be a 2-torsion free semiprime near-ring. Suppose that f(resp. g) is a generalized derivation of \mathcal{N} associated with derivation $d(resp. \delta)$ of \mathcal{N} . If f and g are orthogonal, then the following conditions are true:

- (i) f(x)g(y) = g(x)f(y) = 0 for all $x, y \in \mathcal{N}$.
- (ii) d and g are orthogonal and d(x)g(y) = g(y)d(x) = 0 for all $x, y \in \mathcal{N}$.
- (iii) δ and f are orthogonal and $\delta(x)f(y) = f(y)\delta(x) = 0$ for all $x, y \in \mathcal{N}$.
- (iv) d and δ are orthogonal and this implies $d\delta = 0$.
- (v) dg = gd = 0 and $\delta f = f\delta = 0$.
- (vi) fq = qf = 0.

Proof. (i). By the hypothesis, we have f(x)zg(y)=0 for all $x,y,z\in\mathcal{N}$. Hence we get

$$f(x)g(y) = g(x)f(y) = 0$$

for all $x, y \in \mathcal{N}$ by Lemma 2.3.

(ii). Since f(x)g(y) = 0 and f(x)zg(y) = 0 for all $x, y, z \in \mathcal{N}$, we get, by using Lemma 2.4,

$$0 = f(wx)f(y) = (f(w)x + wd(x))g(y) = wd(x)g(y)$$

for all $w, x, y \in \mathcal{N}$. It follows from the semiprimeness of \mathcal{N} that d(x)g(y) = 0 for all $x, y \in \mathcal{N}$. Then we have

$$d(xw)g(y) = (d(x)w + xd(w))g(y) = d(x)wg(y) = 0$$

for all $w, x, y \in \mathcal{N}$ in view of Lemma 2.4. Therefore by Lemma 2.3, we obtain

$$g(y)d(x) = 0$$

for all $x, y \in \mathcal{N}$ which implies (ii).

- (iii). The proof is similar to (ii).
- (iv). We have

$$0=f(xz)g(yw)=(f(x)z+xd(z))(g(y)w+y\delta(w))$$

for all $w, x, y, z \in \mathcal{N}$ by (i). Thus we get $xd(z)y\delta(w) = 0$ for all $w, x, y, z \in \mathcal{N}$ by (ii) and (iii). Since \mathcal{N} is semiprime, we see that $d(z)y\delta(w) = 0$ for all $w, y, z \in \mathcal{N}$, that

is, d and δ are orthogonal. Then we have $d(x)y\delta(z)=0$ for all $x,y,z\in\mathcal{N}$. Hence

$$0 = d(d(x)y\delta(z)) = d^2(x)y\delta(z) + d(x)d(y)\delta(z) + d(x)y(d\delta)(z).$$

The first two summands are zero since d and δ are orthogonal. Therefore this relation reduces to $d(x)y(d\delta)(z) = 0$ for all $x, y, z \in \mathcal{N}$. But then we also have

$$(d\delta)(z)\mathcal{N}(d\delta)(z) = 0$$

for all $z \in \mathcal{N}$. Hence $(d\delta)(z) = 0$ since \mathcal{N} is semiprime, i.e., $d\delta = 0$.

(v) and (vi). Using (ii) and (iv), we obtain

$$0 = g(d(x)zg(y)) = g(d(x))zg(y) + d(x)\delta(zg(y)) = g(d(x))zg(y)$$

for all $x, y, z \in \mathcal{N}$. Replacing y by d(x) in the above relation, we get gd = 0 by the semiprimeness of \mathcal{N} . Similarly, we see that since

$$d(q(x)zd(y)) = 0$$
, $f(\delta(x)zf(y)) = 0$, $\delta(f(x)z\delta(y)) = 0$

and

$$g(f(x)zg(y)) = 0$$

holds for all $x, y, z \in \mathcal{N}$, we obtain $dg = f\delta = \delta f = fg = gf = 0$, respectively. Hence the proof of the theorem is completed.

We now are ready to prove our main result.

Theorem 1. Let \mathcal{N} be a 2-torsion free semiprime near-ring. Suppose that f(resp. g) is a generalized derivation of \mathcal{N} associated with derivation $d(resp. \delta)$ of \mathcal{N} . Then the following conditions are equivalent:

- (i) f and q are orthogonal.
- (ii) f(x)g(y) = d(x)g(y) = 0 for all $x, y \in \mathcal{N}$.
- (iii) $f(x)g(y) = d(x)\delta(y) = 0$ for all $x, y \in \mathcal{N}$ and $dg = d\delta = 0$.
- (iv) fg is a generalized derivation of \mathcal{N} associated with a derivation $d\delta$ of \mathcal{N} and f(x)g(y) = 0 for all $x, y \in \mathcal{N}$.

Proof. (i) \Rightarrow (ii) and (iii) are proved by Lemma 2.5 (i), (ii), (iv) and (v). On the other hand, (i) \Rightarrow (iv) is obtained from Lemma 2.5 (i), (iv) and (vi).

(ii) \Rightarrow (i). Let us take xz instead of x in the relation f(x)g(y) = 0. Then we have from Lemma 2.4(i) that

$$0 = (f(x)z + xd(z))q(y) = f(x)zq(y)$$

for all $x, y, z \in \mathcal{N}$, hence Lemma 2.3 gives (i).

(iii)
$$\Rightarrow$$
 (i). Since $d\delta = 0$, we have
$$0 = (dg)(xy)$$
$$= d(g(xy))$$
$$= dg(x)y + g(x)d(y) + d(x)\delta(y) + xd\delta(y)$$
$$= g(x)d(y)$$

for all $x, y \in \mathcal{N}$. Replacing x by xz in this relation and using Lemma 2.4(i), we get

$$0 = g(x)zd(y) + x\delta(z)d(y) = g(x)zd(y)$$

for all $x, y, z \in \mathcal{N}$. Hence we get

$$d(y)g(x) = 0$$

for all $x, y \in \mathcal{N}$ by Lemma 2.3. Then (i) follows from (ii).

 $(iv) \Rightarrow (i)$. By the assumption, we have

$$(fg)(xy) = (fg)(x)y + x(d\delta)(y)$$

for all $x, y \in \mathcal{N}$ and we also obtain

$$(fg)(xy) = f(g(xy))$$

$$= f(g(x)y + x\delta(y))$$

$$= (fg)(x)y + g(x)d(y) + f(x)\delta(y) + x(d\delta)(y)$$

for all $x, y \in \mathcal{N}$. Comparing the above two results for (fg)(xy), we get

$$(2.1) g(x)d(y) + f(x)\delta(y) = 0$$

for all $x, y \in \mathcal{N}$. Since f(x)g(y) = 0 for all $x, y \in \mathcal{N}$, we obtain

$$0 = f(x)g(yz) = f(x)g(y)z + f(x)y\delta(z) = f(x)y\delta(z)$$

for all $x, y \in \mathcal{N}$. Hence Lemma 2.3 gives $\delta(z)f(x) = 0$ for all $x, z \in \mathcal{N}$. Replacing z by yz in the last relation, we get $\delta(y)zf(x) = 0$ for all $x, y, z \in \mathcal{N}$ by Lemma 2.4(ii). Thus it follows from Lemma 2.3 that $f(x)\delta(y) = 0$ for all $x, y \in \mathcal{N}$. Now the relation (2.1) yields g(x)d(y) = 0 for all $x, y \in \mathcal{N}$. Putting y = yz in the last relation, we have g(x)yd(z) = 0 for all $x, y, z \in \mathcal{N}$ which shows that d(z)g(x) = 0 for all $x, z \in \mathcal{N}$ by Lemma 2.3. Therefore from (ii), we obtain the result.

Theorem 2. Let \mathcal{N} be a 2-torsion free semiprime near-ring. Suppose that f(resp. g) is a generalized derivation of \mathcal{N} associated with a derivation $d(resp. \delta)$ of \mathcal{N} . If f and δ are orthogonal and g and d are orthogonal, then we have

- (i) $d\delta = 0$ and fg is a left centralizer of \mathcal{N} .
- (ii) $\delta d = 0$ and gf is a left centralizer of \mathcal{N} .

Proof. (i). Since f and δ are orthogonal, we get $f(x)y\delta(y) = 0$ for all $x, y, z \in \mathcal{N}$. Substituting wx for x in this relation, we arrive at, by Lemma 2.4(i),

$$0 = f(wx)y\delta(z) = f(w)xy\delta(z) + wd(x)y\delta(z) = wd(x)y\delta(z)$$

for all $w, x, y, z \in \mathcal{N}$. Hence $d(x)y\delta(z) = 0$ for all $x, y, z \in \mathcal{N}$ by the semiprimeness of \mathcal{N} , i.e, d and δ are orthogonal. Thus we conclude from Lemma 2.5(iv) that $d\delta = 0$. Since f and δ are orthogonal and g and d are orthogonal, we get

$$f(x)\delta(y) = 0$$
 and $g(x)d(y) = 0$

for all $x, y \in \mathcal{N}$, respectively by Lemma 2.3. Thus we obtain

$$(fg)(xy) = f(g(xy))$$

$$= f(g(x)y + x\delta(y))$$

$$= (fg)(x)y + g(x)d(y) + f(x)\delta(y) + x(d\delta)(y)$$

$$= (fg)(x)y.$$

That is, fg is a left centralizer of \mathcal{N} .

(ii). The proof is similar to (i).

Theorem 3. Let \mathcal{N} be a 2-torsion free semiprime near-ring. Suppose that f is a generalized derivation of \mathcal{N} associated with a derivation d of \mathcal{N} . If f(x)f(y)=0 for all $x, y \in \mathcal{N}$, then we have f=d=0.

Proof. By the hypothesis, we have

$$0 = f(x)f(yz)$$

$$= f(x)(f(y)z + yd(z))$$

$$= f(x)f(y)z + f(x)yd(z)$$

$$= f(x)yd(z)$$

for all $x, y, z \in \mathcal{N}$. Hence we see that d(z)f(x) = 0 for all $x, z \in \mathcal{N}$ by Lemma 2.3. Replacing x by xz in the last relation, we get

$$0 = d(z)f(x)z + d(z)xd(z) = d(z)xd(z)$$

for all $x, z \in \mathcal{N}$. By the semiprimeness of \mathcal{N} , we obtain d = 0. Then we have from Lemma 2.4(i) and the hypothesis that

$$0 = f(xy)f(y)$$

$$= (f(x)y + xd(y))f(y)$$

$$= f(x)yf(y) + xd(y)f(y)$$

$$= f(x)yf(y)$$

for all $x, y \in \mathcal{N}$. Thus we get f = 0 by the semiprimeness of \mathcal{N} .

REFERENCES

- N. Argaç et. al.: On orthogonal generalized derivations of semiprime rings. Turk. J. Math. 28 (2004), 185-194.
- 2. M. Brešar: On the distance of the compositions of two derivations to the generalized derivations. Glasgow Math. J. 33 (1991), 80-93.
- 3. M. Brešar and J. Vukman: Orthogonal derivations and an extension of a theorem of Posner. Rad. Mat. 5 (1989), 237-246.
- 4. B. Hvala: Generalized derivations in prime rings. Comm. Algebra. 26(4) (1998), 1147-1166.
- 5. T. K. Lee: Generalized derivations of left faithful rings. Comm. Algebra. 27(8) (1999), 4057-4073.
- 6. A. Nakajima: On generalized higher derivations. Turk. J. Math. 24 (2000), 295-311.
- 7. G. Pilz: Near-rings. 2nd Ed. North Holland, Amsterdam. 1983.
- 8. P. Ribenboim: Higher order derivations of modules. *Portgaliae Math.* **39** (1980), 295-397.

*Department of Mathematics Education, Seowon University, Cheongju, Chungbuk 361-742, Korea

Email address: parkkh@seowon.ac.kr

**Department of Mathematics, Sunmoon University, Asan, Chungnam 336-708, Korea

Email address: ysjung@sunmoon.ac.kr