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LOCAL CONVERGENCE OF NEWTON’S METHOD FOR
PERTURBED GENERALIZED EQUATIONS

Ioannis K. ARGYROS

ABSTRACT. A local convergence analysis of Newton’s method for perturbed gener-
alized equations is provided in a Banach space setting. Using center Lipschitzian
conditions which are actually needed instead of Lipschitzian hypotheses on the
Fréchet-derivative of the operator involved and more precise estimates under less
computational cost we provide a finer convergence analysis of Newton’s method
than before [5]-{7].

1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution of

the equation
(1) 0 € f(z) +g(z) + F(g),

where X, Y are Banach spaces, f: X — Y is a Fréchet-differentiable operator,
g: X — Y is a continuous operator, and F 3 Y is a closed set-valued mapping.
Equation (1) is the perturbed problem for

(2) o€ f(x) + F(z),

where ¢ in (1) is the perturbed operator.

Many problems, e.g. in engineering and economics can be viewed as special cases
of equation (1) [2}-[11].

The most popular method for generating a sequence approximating a solution of
equation (1) is undoubtedly Newton’s method in the form

(3) 0 € f(zn) +g(zn) + F,(xn)(an — Zn) + F(Znt1), (n20)
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where F'(z) denotes the Fréchet-derivative of operator F' [9], and z is an initial guess
in some neighborhood of the solution denoted by z*. A local as well as semilocal
convergence analysis for method (3) involving nonlinear equations has been given in
[2], [3] and the references there.

In the case of generalized equations of the form (1) Geoffory and Pietrus provided
a local convergence analysis for method (3) in [7]. Here we noticed that some
of their hypotheses are not really needed in the proof. Therefore, we managed
under weaker hypotheses and less computational cost to provide a finer convergence
analysis including more precise estimates on the distances involved.

A survey on results involving generalized equations can be found in [1]-[11] and

the references there.

2. LocAL CONVERGENCE ANALYSIS OF METHOD (3)

In order for us to introduce our results we also first need to introduce some
terminology and a fixed point theorem already used in [6].

As in [2], [7] we denote by A(z,y) the approximation of f(z)+ g(z)+ F(z). That
is we set

(4) Alz,y) = fy) + ()~ y) + 9(y) + F(o) forall z,y € X.

It is convenient for us to define operator Q,: X — Y by

Qu(z) = @)+ (@)@ —2*) +9(z*) - f(zn)

(5) - f,(xn)(x —Zn) — g(Tn) (n>0),
and set-valued map 7p,: X 3 Y by
(6) Ta(z) = A(,2%) 7} Qn(2))-

Note that z; € X is a fixed point of Tp if and only if the following implication holds
true:

z) € To(z‘l) =4 Qo(l‘l) c A(a:l,w*)
(7) & 0€ f(zo) + g(mo0) + f'(w0)(z1 — o) + F(x1).
That is x; satisfies (3). In general if x, plays the role of zg, method (3) is used
to show z,41 is a fixed point of T, etc. This way we generate a sequence {zn}
satisfying (3). -
We will make the assumptions:
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(A1) Operator f: X — Y is Fréchet-differentiable and its derivative is L-Lipschitz
continuous and Ly-center-Lipschitz continuous in a neighborhood U of z*. That is

(8) IF'(z) - F'(y)ll < Lljz - yll forallz,y €U,
and
(9) |IF'(z) — F'(z*)|| < Lo|lz — z*|| for all z € U.

(A2) Operator g: X — Y is Ky-center-Lipschitz in a neighborhood U of z*.
(A3) The set-valued mapping A(-,z*)~!: Y =3 X is M-pseudo-Lipschitz at 0 for
z*, i.e. there exist neighborhoods U of z* and V of 0 such that

(10) e(A(,z") M (y) NU, A(,2°)(2)) < Mlly - 2|
for all M such that
(11) aO:M(ngKo) <1,
where,
(12) e(A, B) = sup dist(z, B)
T€A

denotes the excess e from a set B to the set A. The importance of introducing such
a type of continuity due to Aubin has been explained in detail in [1], [5], [6], [11].

From now on we denote forz € X, r >0
(13) Ui,r)={veX||z-v|<r}

We need the following generalization of a fixed point theorem by Ioffe-Tikhomirov
[6], [8):

Lemma 1. Let (X, p) be a Banach space. Let T be a map from X into the closed
subsets of X, let go € X and let r > 0 and A € [0,1) be such that:

(14) diSt(Qo,T(QO)) < T(l - A)a
and
(15) e(T(z1) NU(qo,7), T(x2)) < Ap(z1,22) for all 1,22 € U(go,r).

Then, T has a fized point in U(gg,r). Moreover if T is single-valued, then x is the
unique fized point of T in U(qq,T)-

We can show the main local convergence result of Newton’s method (3):
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Theorem 2. Under assumptions (A1)—(As) and for any ¢ € (ap, 1) there exists
8 > 0 such that for any initial guess xg € U(z*,0) there exists a sequence {z,}
generated by Newton’s method (3) such that

(16) lens1 - 21l < cllan — "I (n > 0).
To prove Theorem 2 we need the auxiliary result:

Proposition 3. Under the hypotheses of Theorem 2 there exist 6 > 0 such that for
all zg € U(z*,8) (xg # z*), the map Ty has a fized point z; in U(z*,9).

Proof. By (A3) there exist positive constants a and b such that
e(A(,2*) " (y) NU(a*,a), A 2*) 7 (2))

(17) < Mlly — 2| for all y,z € U(0,b).
Choose 6 > 0 to be fixed and
(18) § € (0,00),
where,
(19) , 60=min{2,——l-J———-——}.
¢’ 2(L + 2Kpy)

Let go = z*. We will show conditions (14) and (15) of Lemma 1 hold true.
Let zg # z*, zo € U(z*,6). Using (5), (A2), (8) and (9) we get

1Qo(z)ll = [l f(z*) = f(w0) — f'(wo)(z" — o) + g(z") — g(xo)|

(20) < Zla* - zoll* + Kofla*  zoll
For 4 sufficiently small and (18) |
(21) IQu(a") < (£ + Ko )l — 2ol < .
In view of (17) we have:
(22) e(A(,z")7H0) NU(*,a), A(2*) " H(Qo(2")) < M|Qo(=")ll,
and
(23) dist(z*, To(z*)) < M (% + Ko_) |lz* — zol|-

By the choice of ¢ there exists A € (0,1) such that ¢(1 — A) > M(% + Kp), and
hence

(24) dist(z*, To(z")) < c(1 — N)||z* — zol|. .
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Let go = «*, r = ro = c||z* — zp]|. It follows (14) holds.

We shall show (15) also holds true.

In view of § < %, we get 79 < a. Let z € U(z*, ). We can obtain using (8), (9),
(Az), and the choice of §:

1Qo(@)l < IIf(=*) - f(z) — f'(=")(z — 2"
+ [1f(2) = f(zo) ~ f' (o) (z — o)l + llg(z*) — g(xo)]|

< Lla* ~ aoll + Ll ~ moll* + Kollz® ~ ol
(25) < 45 (% + Ko> <b,
where,
(26) p=Ltlo

2
Moreover, for z!,z? € U(z*, 7o), we get
e(To(z') NU(z*, m0), To(z?)) < e(To(z!) NU(z*, 8), To(z?))
< M||Qo(z") = Qo(=?)|
< M||F'(z*)(z" - 2®) — F'(z0)(z" — 2°)|
< MLoflz* ~ ol |l2* — 2?||

(27) < MLgd||z* — 22
We can assume that without loss of generality
A
2 < —=§
(28) <L =%

which implies (15). Therefore all conditions of Lemma 1 hold true. Hence, we
deduce the existence of a fixed point z; € U(z*,rp) for the map Tp.
That completes the proof of Proposition 3. O

Proof of Theorem 2. In view of z; € U(z*, 1) we get
(29) lz1 — =*|| < 7o = c|lzg — 27|

Using induction for go = z*, 7% = cl|lzx — z*||?, following the proof of Proposition 3
for the map T} we conclude the existence of a fixed point x4y for Tk in U(z*, 7).
That is

(30) lzk1 ~ 2*|| < cllzx — z*|%.

That completes the induction and the proof of the theorem. O
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Remark 4. In general

(31) Ly<L
and
(32) Ko< K

holds and 7%, —Ilg—o can be arbitrarily large (2|, (3], where K is the Lipschitz constant of
operator g in some neighborhood V of z*, a hypothesis used in [7] corresponding to
our Assumption (Az). If equality holds in both (31) and (32) then our results reduce
to the corresponding ones in [7]. Otherwise our results constitute an improvement
since they allow: a larger 4, which implies a wider choice of initial guesses zg; a
smaller choice of ¢ which improves the ratio of the quadratic convergence of Newton’s
method (3) given by (16).

These observations/improvements are important in computational mathematics

2], 3], (6], [7), [8], (11].
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