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RECTANGULAR DOMAIN DECOMPOSITION METHOD
FOR PARABOLIC PROBLEMS

YOUNBAE JUN* AND TSUN-ZEE MAI™*

ABSTRACT. Many partial differential equations defined on a rectangular domain
can be solved numerically by using a domain decomposition method. The most
commonly used decompositions are the domain being decomposed in stripwise and
rectangular way. Theories for non-overlapping domain decomposition (in which
two adjacent subdomains share an interface) were often focused on the stripwise
decomposition and claimed that extensions could be made to the rectangular de-
composition without further discussions. In this paper we focus on the comparisons
of the two ways of decompositions. We consider the unconditionally stable scheme,
the MIP algorithm, for solving parabolic partial differential equations. The SOR it-
erative method is used in the MIP algorithm. Even though the theories are the same
but the performances are different. We found out that the stripwise decomposition
has better performance.

1. INTRODUCTION

Many partial differential equations defined on a rectangular domain can be solved
numerically by a domain decomposition method. Non-overlapping domain decom-
position methods [1, 2, 3, 4, 5, 6, 9, 10] have been considered as efficient parallel
algorithms for solving parabolic partial differential equations in parallel computers.
The basic idea for a non-overlapping decomposition is that the original domain is
decomposed into independent stripwise or rectangular subdomains in which two ad-
jacent subdomains share interface lines without overlapping the region. The problem
defined in the subdomains is then becoming independent subproblems so that they
can be solved independently. In order to accomplish the independency, the values
on the interfaces must be estimated before the subproblems can be solved using
an implicit scheme. During the last decade and half there are conditionally stable
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schemes [1, 2] and unconditionally stable schemes [3, 4, 5, 6, 9, 10] being developed
for solving the parabolic problems. Theories of those schemes were focused on the
stripwise decomposition and claimed that extensions could be made to rectangular
decomposition without further discussions. In this paper we focus on the implemen-
tation of the unconditionally stable scheme, the modified implicit prediction (MIP)
algorithm [4], on rectangular decomposition. The SOR iterative method is used for
solving large sparse linear systems which are generated by the discretization of the
subdomains. We propose the practical optimum over-relaxation parameter of the
SOR scheme. We also prove that the stripwise method is more efficient than the

rectangular method, which is demonstrated in numerical experiments.

2. DoMAIN DECOMPOSITION METHODS

In this paper we consider the parabolic partial differential equation of the form
(2.1) Ut = Ugg + Uyy + Qug + Buy +yu + f(2,9,1),

defined in Q = [0,1] x [0,1] and 0 < ¢ < 1, where a, 8,7 are constants, with the
initial condition
(2.2) u(z,y,0) = u%(z,y) in O,
and with Dirichlet boundary conditions on 8Q2 such as
(23) U(O, Y, t) = gl(y9 t)v U(l,y, t) = g?(y) t)ao < Yy < l,t > 07
u(z,0,t) = g3(z,t),u(z, 1,t) = g4(z,t),0 <z < 1,t > 0.

Finite difference method is often used to discretize the domain. We choose the
positive integers L, M, and N so that Az = %, Ay = Tl/f—, and At = —11\7 Take z; =
iAz,y; = jAy, and t; = nAt, where ¢ =0,--- ,L,j=0,"-- ,M,and n=20,--- ,N.
For the sake of simplicity we let h = Az = Ay. We let uj; be the exact solution that
corresponds to u(z;, y;,tn) at the point (x;,y;,t5), and let wfj be the approximation
to uz;. We denote f (zi,yj,tn) by i;+ Then the central finite difference operators
for the time level n at the point (x;,y;) are given by

Wi — Wij no_ Wil T 2Wn w0 Wiy~ 2w Wi

I (Az)? » Y T @ay?

wy =

n — . — .
n_ Wirl; “ Wiy o, Wiy Wi

Ve 28z v 2Ay
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FIGURE 1. Various Decompositions

The main idea of the domain decomposition method is to decompose the original
spatial domain into smaller subdomains in either stripwise or rectangular manner,
see Fig. 1. Many non-overlapping domain decomposition have been done into ver-
tical strips [1, 2, 3, 4, 5, 6, 10]. In this paper, the rectangular decomposition is
considered instead of stripwise decomposition. When we divide the spatial domain
into P vertical strips and P horizontal strips, the rectangular domain is decomposed
into P x P subdomains.

The fully implicit scheme, namely BTCS (Backward Time Central Space differ-
ence) method, is unconditionally stable, however the spatial domain of the problem is
not decomposed, and hence it is not domain decomposition method. There are many
domain decomposition methods, for examples Dawson’s method|1, 2|, the implicit
prediction and implicit correction (IPIC) method[3], the modified implicit prediction
(MIP) method[4], the explicit prediction and implicit correction (EPIC) method[9),
and the stabilized explicit/implicit domain decomposition (SEIDD) method[10]. The
main difference among these methods is the way to estimate the values at the inter-
faces, which is described in [3, 4, 5]. In this paper we adopt the MIP algorithm, in
which the spatial domain is decomposed stripwise, namely stripwise MIP algorithm.
Since we consider rectangular domain decomposition, we need to estimate not only
vertical interface lines, but also horizontal ones. The rectangular MIP algorithm is
as follows:

Rectangular MIP Algorithm

(1) At the boundary :

n __ .,n

(2) Vertical prediction : estimate the values of interface points at z = z;
wi = g, + wyy, + awy + fwy +yw” + fI

20iu} . — Lwl+(L—i)ul] _
T = Lj ij 07 N _ .M
where @7, = T=naz and Wy = up; — Ug;

(3) Horizontal prediction : estimate the values of interface points at y = y;

n __ n 7y 377 7
wi = wg, + Wy, + awy + fuy +yw" + :;
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no_ 2[ju{‘M—Mw?j+(M——j)u;})]
vy J(M—-j)Ay

-~ N 0T T
where @ and Wy = uly, — uj

(4) At the interior for each subdomain :
Wit = Wy, + Wiy + cwy + Bwy +yw" + £
which is the fully implicit scheme.

We note that Uy, ug;, Uips, and ujy are given as the boundary values. It should
be pointed out that Dawson’s method is conditionally stable but IPIC, EPIC, and
SEIDD methods are unconditionally stable, however the correction procedure is
necessary step in the later methods. But there is no correction phase in the MIP
method. Since the stripwise MIP prediction has been shown to be unconditionally
stable in [4], the vertical prediction and horizontal prediction, and hence rectangular
MIP prediction, is also unconditionally stable. We also note that the Gauss-Seidel
(GS) iterative method [8] has been employed in [4] to solve the linear system for
finding interior point values. In this paper we compare the rectangular MIP algo-
rithm with the stripwise MIP algorithm at the use of the successive over-relaxation
(SOR) iterative method [8].

3. ANALYSIS OF THE RECTANGULAR MIP ALGORITHM

In this section, we analyze the rectangular MIP algorithm and compare it with
the stripwise MIP algorithm. We first describe the coefficient matrix of the linear
system generated by the central finite difference method for finding interior point
values. .

The problem (2.1)-(2.3) can be discretized and represented by a linear system
with the coefficient matrix A defined by '

(3.1) A=(14+4r —yAt)I —4rR+7rS

where r = %gt and h = Az = Ay, and R and S are block triangular matrices giifen
by

R 1 0 - 0 : r0 1 0 - 07
. I R I 1 0 1 :
R=Z o - ol withkR=1g 0 |, and
P I R I : 1 0 1
O .- O I R] L 0 0 1 0]
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The system may be very large and sparse if h is very small, thus iterative methods
are often used to solve such system [8]. In this paper, since we use the successive
over-relaxation (SOR) iterative method, we first investigate the determination of the
optimum value of the over-relaxation parameter w of the SOR iterative method.

We define MIP(P x P) to be the rectangular MIP method with P vertical and P
horizontal strips. MIP(P?) is defined by the stripwise MIP method with P? vertical
strips. We note that the number of subdomains used in the MIP(P x P) is the
same as in the MIP(P?). We let Gpxp and Gp2 be the iteration matrices of the
Gauss-Seidel (GS) method for the MIP(P x P) and the MIP(P?2), respectively. We
note that if P = 1, then G141 is the GS iteration matrix of the BTCS scheme. We
also note that G is identical to Gi2. Theorems 3.1 and 3.2 show the spectral radii
of Gpxp and Gp2, respectively, for Dirichlet boundary value problem (2.1)—(2.3).

Theorem 3.1. The spectral radius of Gpxp s approzimated to

" 4r cos Prh 2
p(Gpxp) = T3 2 — AL

Moreover ifa =3 = .0, then the spectral radius of Gpxp is exact to

[ 4rcos Prh 12

p(Gpxp) = T ar — At

Proof. Consider Equation (3.1). The Jacobi iteration matrix G px p,y of the MIP(P x
P) algorithm can be written as

Gpxpg=1 {(1+4r —yAt)I —4rR+ 1S}

T 1+4r — yAt
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4r r
- 1+4r—'yAtR_ 1+4r—fyAtS'

Thus

4r r
G S Iy v G pa m— v
4r cos Prh r(lah| + |Bh|)
T 1+4r—yAt  144r — At

When h is very small, the spectral radius of the GS iteration matrix p(Gpxp) can

(5)

be approximated by

B 2 4r cos Prh 12
p(Gpxp) = [p(Gpxp))]" = [—““——1 T vAt]

If @ = 8 =0, then § is equal to zero matrix, and hence

4r cos Prh ]?
p(Gpxp) = [m] ‘
O
Theorem 3.2. The spectral radius of Gp2 is approzimated to
_ [2r(cos P2rh + cosh) ] 2
p(Gp2) ~ | 1+4r— At
Moreover if a = 8 =0, then the spectral radius of Gpxp is exact to
[2r(cos P2rh + cosh) |?
PGP) = | = oA
Proof. See [6]. _ _ O

Theorem 3.3.

4r cos Prh |2 5 [2r(cos P2rh + cosh)]?
14+4r — yAt 1+ 4r — yAt )
The equality holds only if P = 1.

Proof. Without loss of generosity, we assume that P > 1 and P? < £ ie. P?2h < 1.
It is sufficient to show that
2cos Prrh — cos P2rh — cosmh > 0.

Let f(P) = 2cos Prh — cos P2rh — cosmh be a function of P. We claim that
f'(P)>0and f(1) =0. Clearly f(1) =0.
f'(P) = —2nhsin Prh + 2Prhsin P2rh
= ~27hsin Prh + 2nhsin P2nh — 2nhsin P2rh + 2Prhsin P2rh
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= 2nth(sin P21h — sin Prh) + 2nh(P — 1)sin P2rh

>0.
Thus f(P) is an increasing function and has a minimum value of 0, and hence
f(P) 2 0. The equality holds only if P = 1. O

It should be pointed out that Theorem 3.3 shows the spectral radius of the GS
iteration matrix of the stripwise MIP algorithm is less than or equal to that of the
rectangular MIP algorithm. This implies that the stripwise MIP method is more
efficient than the rectangular MIP method, which will be demonstrated in a later
section. Since we employ the SOR iterative method for solving linear systems, the
way to determine the over-relaxation parameter w is important. The optimum over-

relaxation parameter can be computed [8] by

2
Wopt = ————=—=,
14 /1= p(G)
where G is the GS iteration matrix. We define the approximated optimum over-
relaxation parameters w(P x P)qpp and w(P?)qyp by

2
(32) (P X Pagp = :
141 [igmre]
and
o 2
(3.3) W(P)app =

2r{cos P2mwh+coswh) 2’

1"'\/1“ [ e ]

for the MIP(P x P) and the MIP(P?), respectively. We pointed out in [6] that the
approximated optimum over-relaxation parameter w(P2)app is a very good approxi-

mation to wep for the stripwise MIP method. It will be seen later that w(P x P)app
for the rectangular MIP method is also excellent.

4. NUMERICAL RESULTS

In this section we present the numerical experiments of the rectangular MIP
algorithm to solve Dirichlet boundary value problems (2.1)—(2.3). Let P x P be
the number of subdomains decomposed in rectangular manner. We note that when
P =1, the MIP algorithm reduces to the fully implicit BTCS method which is.very
well known as an unconditionally stable scheme. When P is other than 1, we need to
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estimate the vertical or horizontal interface information in which a tridiagonal linear
system is generated and solved by a direct method. After obtaining the information
of the interfaces, a large sparse linear system is generated for each subdomain that
can be solved independently by the SOR iterative method. The stopping criterion
in the iterative procedure is given by
™ — D]
@,

where w(™ is the estimate at the nth SOR iteration and ¢ is a preset small value.

<€

We choose ¢ = 1078 for our experiments. All our numerical experiments are carried

out on a Sun V880 running Solaris 9.

4.1. Model problems
4.1.1. Model problem 1 (M P1)
Ut = Ugg + Uy — u+ 2" sinz cos y,
over the region [0,1] x [0,1] and 0 < ¢t < 1. The initial and boundary conditions are
given by
u(z,y,0) =sinzcosy,0 < z,y < 1,
u(0,y,t) = 0,u(l,y,t) = e *sinlcosy,0 < y < 1,t > 0,

t

u(z,0,t) = e"tsinz,u(x,1,t) = e *sinzrcos1,0 < x < 1,¢ > 0.

t

The exact solution is u(z,y,t) = e 'sinz cos y.

4.1.2. Model problem 2 (M P2)
Up = Ugg + Uyy + Ug + Uy +u+f(a:,y,t),

where f(z,y,t) = (1+zy) cost — (1+z)(1+y)sint over the region [0, 1] x [0,1] and
0 <t < 1. The initial and boundary conditions are given by

u(z,y,0)=0,0<z,y <1,
u(0,y,t) =sint,u(l,y,t) = (1 + y)sint,0 <y < 1,t > 0,
u(z,0,t) =sint,u(z,1,t) = (1 + z)sint,0 < z < 1, > 0.

The exact solution is u(z,y,t) = (1 + zy)sint. :
We note that MP1 is chosen with o = 8 = 0 and MP2 is chosen with nonzero

coefficients.



RECTANGULAR DOMAIN DECOMPOSITION METHOD 289

4.2. Stability We first show that the rectangular MIP algorithm is unconditionally
stable for solving Dirichlet boundary value problems (2.1)—(2.3). We note that the
stable condition for a fully explicit scheme is the value of A < % where ) is defined

by
At At

D e S W
(Ba) * (By)?
Thus we use X as the guide index to illustrate that the rectangular MIP algorithm
is stable for large values of A. Table 1 shows the exact maximum error

“wN_uN”oo

at t = 1 with various values of A\. We also compare the error in the rectangular
MIP(2 x 2) method of 2 x 2 subdomains with the stripwise MIP(22) method of 4
vertical subdomains.

Table 1. Maximum error at t = 1 with various X

At Az b MP1 MP2
= Ay BTCS | MIP(2 x 2) | MIP(2%) || BTCS | MIP(2 x 2) | MIP(2?)
2 | &z 110000 [[ 3e-3 3e-3 6e-3 Te-2 1e-2 1e-2
= | 15 | 4000 || 1e-3 1e-3 4e-3 7e-3 6e-3 7e-3
35 | 55 | 2000 || 6e-4 7e-4 3e-3 3e-3 3e-3 3e-3
3= | 155 | 1000 [ 2e-4 de-4 3e-3 1e-3 1e-3 1e-3

We note that for the over-relaxation parameter w of the SOR iterative method
in Table 1, we used the approximated optimum over-relaxation parameter wgy, in
Equations (3.2) and (3.3). As we can see in Table 1, the rectangular MIP algorithm
is as unconditionally stable as the stripwise MIP algorithm. In the next section, we
will describe how accurate the approximated wepp is and we compare it with the
actual wopt.

4.3. Optimum over-relaxation parameter Approximated optimum over-rela-
xation parameter of the SOR method to the MP2 at Az = Ay =0.01 and At =0.1
with 2 x 2 rectangular subdomains is computed by

4r cos Prh
P(G2x2)app = [

2

and .
= 1.8757.

(2 % 2)gpp = 2
v P14 /1-p(Gp)

Fig. 2 is the graph of CPU time with respect to the various w to the MP2 at
Az = Ay = 0.01 and At = 0.1 with 2 x 2 subdomains. As we can see in Fig. 2, the
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value of w(2 X 2)4pp is nearly optimum. We note that when w = 1, the SOR method
becomes the GS method.

Model problem 2 using the MIP(2x2)
T T T T

30 T —

25+

201

CPU time
o

10F

0 " L : L L "
1 1.1 12 13 1.4 15 16 1.7 18 1.9 2

values of w

FIGURE 2. CPU time for various w

Table 2 shows the comparison of wapp With wep for the model problems with
Az = Ay = 0.01 and At = 0.1. In order to compute the actual w,y¢, Matlab [7] was
used in computation of the actual spectral radius. As we can see in Table 2, the
approximated optimum over-relaxation parameter wgpy is very good approximation
to the actual optimum parameter wqp. It should be pointed out that f a = 3 =0
like MP1, then the approximated p(Gpxp)app is equal to the actual p(G Px P)act
which was mentioned in Theorem 3.1. We note that all computation in Table 2 are

done in 15 significant digits precision.

Table 2. Optimum over-relaxation parameter

(app=approximate,act=actual,opt=optimum)

MP MP1 . ; MP2

PxP 1 2x2 5x5 10x10|1 2x2 5x5 10x10
P(Gpxp)app | 0.9985 0.9955 0.9750 0.9040 | 0.9986 0.9956 0.9751 0.9041
Wapp 1.9246 1.8744 1.7269 1.5269 | 1.9270 1.8757 1.7274 1.5271
p(Gpxplact | 09985 0.9955 0.9750 0.9040 | 0.9985 0.9956 0.9751 0.9041
Wopt 1.9246 1.8744 1.7269 1.5269 |1.9264 1.8754 1.7273 1.5271
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4.4. Efficiency We now investigate the efficiency of the rectangular MIP algorithm
with the SOR method using wepy, for the model problems. A common measurement
for the efficiency of a parallel algorithm is the speedup which is defined by

Execution time for a single processor

Speedup =
P P Execution time using ) processors
Since the numerical experiment is simulated with one processor, the true parallel
execution time using () processors is roughly equivalent to the total CPU time, Ty,
obtained by the simulation, being divided by @. Thus the speedup Sq is simplified
to

Se= To/Q

Table 3 shows the maximum error and speedup Sg of the SOR method of the
rectangular MIP algorithm to the model problems at the final time level ¢t = 1 with
Az = Ay = 0.01 and At = 0.1 using wgpp. We note that the number of processors
Q is equal to P x P for the rectangular MIP algorithm.

Table 3. Speedup of the rectangular MIP algorithm

|Q=PxP)|1 2x2 4x4 5H5x5 1W0x10 25x25 50x50

Error 6e-4 Te-4 3e-3 3e-3 3e-3 3e-3 2e-3
MP1 Tg 293 160 0.72 0.61 0.31 0.13 0.04
Sg 1 7.325 65.111 120.08 945.16 14086.5 183125
Error 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3 3e-3
MP2 TQ 3.04 1.72 0.72 0.58 0.29 0.12 0.04
So 1 7.070 67.556 131.03 1048.28 15833.3 190000

Fig. 3 shows the graphs of log Sg with respect to the number of processors @) for
the model problems with Az = Ay = 0.01 and At = 0.1. We note that the speedup
is much more than linear.

We now describe comparison of the efficiency of the rectangular MIP algorithm
with the stripwise MIP algorithm. Table 4 shows total CPU time of the MIP(P x P)
and the MIP(P?) for the model problems with various P. As we can see in Table
4, p(Gpz) < p(Gpxp) and total CPU time for the MIP(P?) is less than that for
the MIP(P x P). We should note that as we mentioned earlier in Theorem 3.3, the
stripwise MIP method is faster than the rectangular MIP method.
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FIGURE 3. Speedup curves for the model problems

Table 4. CPU time for the model problems

MP MP1 MP2

PxP 1 2x2 5x35 |1 2x2 O5x5
P(GpxP)app | 0.9985 0.9955 0.9750 | 0.9986 0.9956 0.9751
Wapp 1.9246 1.8744 1.7269 | 1.9270 1.8757 1.7274
Error 6e-4 Te-4 3e-4 3e-3 3e-3 3e-3
CPU 2.93 1.60 0.61 3.04 1.72 0.58
P? 1 4 25 1 4 25
p(Gp2)app | 0.9985 0.9911 0.7277 | 0.9986 0.9912 0.7278
Wapp 1.9246 1.8275 1.31421.9270 1.8284 1.3143
Error 6e-4 3e-3 3e-3 3e-3 3e-3 3e-3
CPU 2.93 1.49 0.22 3.04 1.45 0.21

We note that when L = M = 100, the MIP(P?) method can use processors up
to P2 < %, i.e. 49 processors. However the MIP(P x P) method can use processors

upto Px P < % X %, i.e. 2500 processors. As long as there are enough processors,
the MIP(P x P) method is useful.

5. CONCLUSION

In this paper, we compared the MIP algorithms solving parabolic partial differ-
ential equations with two most common ways of decomposing the spatial domain,
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stripwise and rectangular decompositions. The iterative method used was the SOR
method; the rate of convergence of an iterative method depends on the spectral
radius of the iteration matrix as well as the choice of the over-relaxation parame-
ter. We showed that the spectral radius of the iteration matrix is smaller in the
case of stripwise decomposition when the same number of processors are used. The
smaller spectral radius implies faster convergence. In the numerical experiments
the performance using stripwise decomposition is much better than in the rectangu-
lar decomposition. Moreover, we have shown how to obtain very good estimations
for the optimal over-relaxation parameters for the SOR method in both domain
decompositions.
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