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TOPOLOGICAL MAGNITUDE OF A SPECIAL SUBSET
IN A SELF-SIMILAR CANTOR SET

IN-So0 BAEK

ABSTRACT. We study the topological magnitude of a special subset from the distri-
bution subsets in a self-similar Cantor set. The special subset whose every element
has no accumulation point of a frequency sequence as some number related to the
similarity dimension of the self-similar Cantor set is of the first category in the
self-similar Cantor set.

1. INTRODUCTION

Recently the Hansdorff and packing dimensions of multifractal subsets by a self-
similar measure on a self-similar Cantor set (cf. [1, 2, 3, 4, 9, 14, 15]) were studied ({5,
7, 8. 11}) for the investigation of the sizes of subsets of fixed local dimension. Further
the self-similar Cantor set can be completely decomposed into a class of lower(upper)
distribution sets deduced from a frequency sequence ([4, 6, 12, 13]). The class of
lower(upper) distribution sets was used for investigating the Hausdorff and packing
dimension information of the subset having same local dimension of a self-similar
measure on the self-similar Cantor set. It sometimes gives rich information for
the structure of the self-similar set. In particular, the packing dimension will give
some information of the topological magnitude about some special subset from the
distribution subsets in a self-similar Cantor set. In this paper, the term of the
topological magnitude of a test subset in a self-similar Cantor set will be used for
the test set to be of first category or of sccond category in the self-similar Cantor
set. If the test set is of first category in the Cantor set, it can be considered as
small for its topological magnitude. In the paper ([4]), singular value related to the

similarity dimension of the self-similar Cantor set has a critical role to decide phase
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transition. Similarly in this paper, we will show that it has an important role for
a subset to have a small topological magnitude or not. In this paper, we note that
packing dimension is closely related to the topological magnitude. Further we will
have our results from the facts that countable union of some subsets cannot increase
its topological magnitude from the definition whereas their packing dimension and
Hausdorff dimension increase their values. We also note that Olsen conjectured that
the manipulation from his result ([12]) may give a better result than ours. However
this paper gives a heuristic proof for the relation between packing dimension and
topological magnitude together with the singular value related to the similarity
dimension of the self-similar Cantor set.

2. PRELIMINARIES

We denote F' a self-similar Cantor set, which is the attractor of the similarities
fi(z) = ax and fo(z) = bz+(1-b)on I = [0,1] witha > 0,5 > 0and 1—(a+b) > 0.
Let I;; ... s = fiyo- -0 fi, (I) where i; € {1,2} and 1 < j < k. We note that ifx € F,
then there is o € {1,2}" such that (3>, Iy, = {z} (Here olk = 1,4, -+ , i where
0 =11,4p, ik k1, - ). Ifx € F and x € I, where o € {1,2}*, cx(x) denotes
I, and |ck(x)| denotes the diameter of ci(x) for each ¥ = 0,1,2,---. Let p € (0,1)
and we denote 1, a self-similar Borel probability measure on F satisfying v,(I1) = p
(cf. [8]). dim(FE) denotes the Hausdorff dimension of E and Dim(E) denotes the
packing dimension of F ([8]). We note that dim(FE) < Dim(FE) for every set E ([8]).
We denote ni(z|k) the number of times the digit 1 occurs in the first k places of
z = o (cf. [10]).

For r € [0,1], we define lower(upper) distribution set F(r)(F(r)) containing the
digit 1 in proportion r by

F(r)y= {x eF: ligninfﬂg—“g—) = r},

F(r) = {x €F: nmsup”—l%lk—) = r}.

k—o00

We write E,(f ) (E&p )) for the set of points at which the lower(upper) local dimen-
sion of 7, on F is exactly «, so that

Eg’) = {x . hminfloﬁp_(w — a},
r—0 log
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E,(lp) = {:E : limsupM = a}.
r—0 logr

Let p € (0,1) and consider a self-similar measure 7y, on F and let r € [0, 1] and
g(r,p) = Tl‘ﬁf;ﬁarzgglgg;p ). We note that there exists a real number s satisfying
a® +b° = 1, which is called the self-similarity dimension of a self-similar Cantor set
F.

We note that each z € F has its frequency sequence (ni(z|k))x. In this paper,
we will show that the subset T of points whose frequency sequence does not have a°
as an accumulation point is of first category in F.

3. MAIN RESULTS

We note that a self-similar Cantor set F is of second category in itself since F' is
closed in a complete metric space R.

Lemma 1. Let K be a subset in a real line and assume that Dim(B,(x) N K) =
Dim(K) for any x € K and any radius 7 > 0. Then E C K with Dim(E) <
Dim(K) must be of first category in K.

Proof. Assume that E is of second category in K. If E = U, E,, there is some integer

n such that (F,)° # ¢. Therefore there exists some r > 0 such that B.(z) N K C
(E,)°. Then from the definition of a dimensional index A ([16]),

Dim(E) = inf (sup A(E,)) = inf (sup A(E,)R)

UFEn=FE (En) UEn=F (En)
> 0 M=t — .
2 inf E((sgg A(EyR)) = Dim(K),

where A(A)g means the dimensional index of the closure of A in R whereas A(A)

.means the dimensional index of the closure of 4 in F. It follows from the assumption
with the fact that A(E,) > Dim(E,) > Dim(B,(x) N K) = Dim(K). 0
Example 1. The self-similar Cantor set F is an example K satisfying the above
condition since the neighborhood of each point in F' has a fundamental interval of
some stage to construct F, which means it has the full structure of F.

Example 2. F(r), F(r) are also the example K satisfying the above condition.

Theorem 2. Let H(t) = Ui<,<1F(r) and G(t) = Up<r<tF(r). Then H(t) where
a® <t <1 is of first category. Similarly G(t) where 0 <t < a° is of first category.

Proof. 1t follows from Theorem 2 in [4] and the above Lemma. g
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Theorem 3. dim(H(t)) = Dim(H(t)) = g¢(t,t) where o® < t < 1. Similarly
dim(—C—v’(t)) = Dim(G(t)) = g(t,t) where 0 <t < a®.

Proof. Let z € G(t)) where 0 < t < . Then z € F(r) where 0 < r < t. Since
F(r) = E;t()r’t) by the theorem 2 in [4], noting g(r,t) is an increasing function for r
where 0 < t < a®, we have

lim sup ——————lOg 2(en(@))

n—oo  10g |cn ()]

Since g(t,t) < s, Dim(G(t)) < g(t,t) < 5. Now dim(G(t)) > dim(F(t)) = g(¢,¢).
Hence dim(G(t)) = Dim(G(t)) < g(t,t) < s. Dually we can prove that dim(H(¢)) =
Dim(H(t)) = g(t,t) where a®* < t < 1. O
Theorem 4. Let T = [U%O=1 H(a® + %)] ufue G(a® ~ %)] Then dim(T) =
Dim(T) = s. '

= g(r,t) < g(t,t) < g(a®,a®) = s.

Proof. We note that sup,cy g(a® + }L,as + %) =5 = sup,en g(a® - %,as - %)

It follows from the o-stability of Hausdorff and packing dimension and the above
theorem. O
Theorem 5. Let T = [US2, H(a®+1)JU[use,G(a® — L)]. ThenT is of first category
in F.

Proof. 1t follows since the countable union of subsets of first category is also of first
category. U
Lemma 6. For each x € F, x has the accumulation points of the frequency sequence

(n1(zlk))k as [liminfg o0 m(—,flﬂ, lim supg_, 0 n—l(;:ll]

Proof. 1t easily follows from the lemma 2.3 in [13]. U
Theorem 7. Let T = [ U2, H(a® + %)] u[ux, Ge® - %)] Then every point x
in T has no accumulation point of the frequency sequence (ni(z|k))r as a®.

Proof. 1t follows from the above lemma. U

Remark 1. We note that the above set T has full Hausdorff and packing dimension
s of the self-similar set F whereas T has small topological magnitude, which means

T is of first category in the self-similar set F.

Remark 2. L. Olsen conjectured that F(0) N F(1) is comeager in F in the view of
his previous result ([12]).
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TOPOLOGICAL MAGNITUDE OF A SPECIAL SUBSET IN A SELF-SIMILAR CANTOR SET 5

REFERENCES

. 1. 8. Baek: Hausdorff dimension of perturbed Cantor sets without some boundedness
condition. Acta Math. Hungar. 99(4) (2003), 279-283.

I. S. Baek: On a self-similar measure on a self-similar Cantor set. J. Chungcheong Math.
Soc. 16(2) (2003), 1-10.

I. S. Baek: Spectra of deranged Cantor set by weak local dimension. J. Math. Kyoto
Univ. 44(3) (2004), 493-500.

1. S. Baek: Relation between spectral classes of a self-similar Cantor set. J. Math. Anal.
Appl. 292(1) (2004), 294-302.

L. Barreira & B. Saussol: Variational principles and mixed multifractal spectra. Trans.
Amer. Math. Soc. 353 (2001), 3919-3944.

L. Barreira, B. Saussol & J. Schmeling: Distribution of frequencies of digits via multi-
fractal analysis. J. Number Theory 97 (2002), 410-438.

R. Cawley & R. D. Mauldin: Multifractal decompositions of Moran fractals. Advances
in Mathematics 92 (1992), 196-236.

8. K. J. Falconer: Techniques in fractal geometry. John Wiley and Sons (1997).

10.

11.
12.

13.

14.

15.

16.

T. H. Kim, S. P. Hong & H. H. Lee: The Hausdorff dimension of deformed self-similar
sets. Hiroshima Mathematical Journal 32(1) (2002), 1-6.

H. H. Lee & I. S. Baek: Dimensions of a Cantor type set and its distribution sets.
Kyungpook Math. J. 32(2) (1992), 149-152.

L. Olsen: A multifractal formalism. Adv. Math. 116 (1995), 82-196.

L. Olsen: Extremely non-normal numbers. Math. Proc. Camb. Phil. Soc. 137 (2004),
43-53.

L. Olsen & S. Winter: Normal and non-normal points of self-similar sets and divergence
points of self-similar measures. J. London Math. Soc. 67(2) (2003), 103-122.

N. Patzschke: Self-conformal multifractal measure. Advances in Applied Mathematics
19(4) (1997), 486-513.

D. Rand: The singularity spectrum f(a) for cookie-cutters. Ergodic Th. Dynam. Sys.
9 (1989), 527-541.

C. Tricot: Two definitions of fractional dimension. Math. Proc. Camb. Phil. Soc. 91
(1982), 57-74.

DEPARTMENT OF MATHEMATICS, PUSAN UNIVERSITY OF FOREIGN STUDIES, PUSAN 608-738, Ko-
REA

Email address: isbaek@pufs.ac.kr



