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A NOTE ON THE ROOT SPACES OF AFFINE LIE ALGEBRAS
OF TYPE D!

YroNOK KiMm

ABSTRACT. Let g = g(4) = N_ & h & N4 be a symmetrizable Kac-Moody Lie
algebra of type Dl(l) with W as its Weyl group. We construct a sequence of root
spaces with certain conditions. We also find the number of terms of this sequence
is less then or equal to the hight of 8, the highest root.

0. INTRODUCTION

We first recall some of the basic definitions of Kac-Moody Lie algebras.

Let A = (ai;)i jer be an indecomposible generalized Cartan matrix and g = g(A)
denote the associated Kac-Moody Lie algebra over the field of complex numbers.
Following the usual convention, we will take the index set I to be {0,1,...,!} when
A is of affine type and I to be {1,2,...,l} otherwise. Let g = 91_ & h & N,
be its triangular decomposition with respect to the Cartan subalgebra h and let
A = AL UA_ denote the set of roots with A, and A_ denoting the set of positive
and negative roots respectively. Let II = {e;|i € I} denote the set of simple
roots, IT = {d;|4 € I} denote the set of simple coroots. Let g, denote the a-root
space and @ = ) . ;Za; denote the root lattice. Let W be the Weyl group of g
generated by the simple reflections {r;|i € I}. For o, € Q, we define a > S if
a—-BEQy =) Z>0a; Fora= Zé:o kia; € @Q, we define ht(a) = Zé:o k; to be
the height of a.

It is known that the generalized Cartan matrix A = (ai;); jer is either (i) finite
(it) affine or (iil) indefinite type Kac [3, Theorem 4.3].
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In Billig & Pianzola [5], Billig and Pianzola conjectured that the nilpotency index
of the subalgebra S, is bounded by a constant £ = k(A) which depends only on the
Cartan matrix A not on w. We (Kim, Misra, Stizinger) settled this conjecture in
most case Kim, Misra & Stitzinger [4]. This information helps us in constructing a
sequence of root spaces with certain conditions.

In this paper, we study the root system of affine Lie algebra of type Dl(l). We
construct a sequence of root spaces with some conditions. And then we prove that
the number of this sequence is finite (less than or equal to the height of 6, the highest

root. )
1. ROOT SYSTEM OF AFFINE LIE ALGEBRA OF TYPE Dl(l)

Let A = Dl(l) and g = g(A) be the associated affine Lie algebra. Let § = g(fi)
be the corresponding simple Lie algebra with Carten matrix A= (aij)li,j:y Let A
and A denote the set of roots for g and § respectively. Then A = A™ U A, where
AT¢, A" denote the real, imaginary roots respectively. It is known that the set
of positive imaginary roots A7" = {nd | n € Z5o}, where § = Zi:o a0y, a; € Lo,
ged(ag, . . .,a,) = 1 and Aag, . ..,a,)T = 0. Note that A = AL UA_, A= LUA_,
ATE = ATEU AT, A = AUy A" where the subscript plus/minus denote the
positive/negative roots. Let M= {a1,...,0q} and II = {ag,a1,...,q;} denote the
simple roots for § and g respectively.

Proposition 1.1 (Humphreys [1]). Fach a € Ay can be written in the form o, +
Qmy +* + Qm, (am; € II, not necessarily distinct) in such a way that each partial

SUM Oy + Qmy + - + Gy, 15 @ TOOL.

Corollary 1.2. Let g = g(A) be a Lie algebra of type Dl(l). Let 0 = a1 + 209 +
coo 4+ 20y_9 + ay_1 + ¢y, the highest root in & Then there is a sequence {6} in
A+ such that ht(0,) =n forn=1,2,...,2l — 3 and Oyy_3 = 0.

Note that § = ag + a1 + 202 + - +20p2 + ;1 + o and § — ap = 6 Kac [3].

The following proposition describes the set of real roots A™ in terms of A and 6.

Proposition 1.3 (Kac [3]). Let g = g(A) be a Lie algebra of type Dl(l). Then
AT = {a+nd | acl nez).

Let Wand W denote the Weyl groups of § and g, respectively. Note that the set
of imaginary roots AY™ are invariant under the action of Weyl group W Kac [3].
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Furthermore, for w € W, we have
At (w) = {aeAy|w(a) <0} C AT

Let aj,, iy, - .., @5, € IT (not necessarily distinct) and denote r; the simple reflec-
tion of W. When w € W is written as w = r;, -7y, (ay; € I, t minimal), we call

the expression reduced. We call ¢ the length of w and is denoted by I(w).

Proposition 1.4 (Wan [6]). Letw = r;;---1r;, € W be a reduced expression of w.
Then

AY (w) = {B1, ..., B},
where By = 14y - 1y, (i) (1 < p < t) and the By are all distinct. In particular,
l(w) = |AT(w)|.

Note that ITand —ITare root bases of A. Since Wacts transitively on the bases
Humphreys [1], there exists wy € Wsuch that wy 1) = -11
Proposition 1.5. Let g = g(A) be an affine Lie algebra of type Dl(l). Let
wo = (717273~ T1_3T_2TITI-1T1—2T1—3 - - - T3T2T1)
X (ror3 - T_3TI_oTITI-1TI—2T1-3 " " " T3T2)
X (13 ... TI_3T1—2MT~1T1—2T1-3 "~ T3) - (*1—3TI—27iT1—17T1~2T1-3)
X (ri~amimi—171-2)(T171-1)-

Then wo_l(a,-) = —q; for i =1,2,...,n. Furthermore, At (wg) = &r

Proof. By simple calculation, wg 1(ozi) = —q; fori=1,2,...,n and hence
Ay € AF(w).
Since |AT (wp)| = l(wo) =11 -1) = I&[, we get a desired result. d

2. MAIN RESULTS

Let g = g(A) be a Lie algebra of type Dl(l) and 6 be the highest long root in &

Construct a sequence {6,} as follows:

i1 for 1<n<1l-2,
(2_1) 0. = Zi;i o + a1 Or Zi;? o; +ap for n=1-1,
i §=1 & for n=I,

Zi:l a; + Zi;gl_n_l Q; for 1<n<20-3,
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Then sequence {,} has the following properties:
(a) {6,} is a sequence in &(Dl(l)) with ht(6,) =n forn =1,2,...,2[ - 3.
(b) ﬂeﬁimpliesﬂzﬁj—& for some 1 < 4,7 < 20— 3.

In the above sequence {6, }, let

-2 -2
Zai +ao = 91—1,20@ + oy = 0.
=1 =1

Then Qp = 9ﬁ - 91_2, a1 = 91_1 - 91_2.

Let 6p = 0, 0912 = 6 + ;. For ¢ > 2, ;—; can be represented by two ways,
;=01 — 0 ;-1 =051 — O14i_2.

Draw a line and place vertices corresponding to 8, forn = 0,1, ... 2]—2 as follows.
Let a,b,c and d stand for 6y, 81, 09;_3 and f9;_4 respectively. Let 1,2,3 and 4 stand
for 6;_9,6;_1,60; and 0;— respectively.

(2-2)
o -y Q-2 -1 Q-2 Ay o2 ]
p™ GO v e LD 0 0 DI LN N O O £Nd
[27]
4—173

As was shown in the diagram, we identify «; as the segment connecting two
adjacent vertices.
Now for w € W, we define

X={aecA |w(a+nd) <0 for some n € Zso}t,

and
Y={acA_ |w(a+nd) <0 for some n € Zso}.
We denote — X ={-a|aeX}and -Y ={-a|acY}
Construct a sequence {f,} in X UY such that for each n,

(2-3) sn=Zﬁi€XUY where g, e X UY
i=1

are not necessarily distinct. We have the following Proposition.

Proposition 2.1 (Kim, Misra & Stitzinger [4]). Let g = g(A) be an affine Lie
algebra with W as its Weyl group and let w be any element of W, and {s,} be the
sequence constructed as in (2-3). Then no partial sum of the subsequence {8;,} of
{Bn} is equal to 0.
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On the diagram of Dl(l), let us identify 8 = 6; — 0; with bending line connecting
two vertices #; and 6;. Let bending line above and below stand for positive and
negative root, respectively. Then s, = . ; §; can be represented as the connected
n numbers of bending lines. In other words, we can see the process of addition of
Bis on the diagram. We will say that the diagram of {s,} has no cycle if each vertex

6; meets at most once with bending lines which represent {s,}.
Corollary 2.2. The diagram of the sequence {s,} has no cycle.

Draw the diagram of the sequence {s,} in (2-2). Whenever we add

(a) the vertex 0 for j <k,

2-4 ; = 0 — 6., place the asterix (x) sign o
(24) B =0 =6; p erix (+) sign n{(b) the vertex 0; for j > k.

As was shown in above, s, = Z?:l [; can be represented as the connected n numbers
of bending lines which has two end vertices, one is marked by * and the other is not
marked. Call the vertex which is not marked the initial vertex and the other the
terminal vertex. Reorder the vertex which are marked by x from the initial vertex to
terminal vertex following the connected bending lines. If n, ng, n3,ng4 were marked
with * in this order, then we write ningngng. Note that xzy means y follows after «
but not necessarily immediately.

We identify zy = y — . In other words, we can identify zy with some element
o= Zgzp kio; € Q. By this identification, 2y = —yz. Let z,y,s,t are vertices on
the diagram. If zy + st = 0, then zy and st makes a cycle.

Lemma 2.3. Let A is of type Dl(l) and g = g(A) is the associated Lie algebra. Let

a,b,c,d are vertices in (2-2). Then there are 8 possible enumerations of a,b,c,d.

Proof. Since ab+ dc = ac+ db = 0,(ab and dc) and (ac and db) make cycles, a
contradiction. Similarly, (ba and cd) and (ca and bd) make cycles, a contradiction.
Therefore, the remaining possibilities are;
abcd, acbd, badc, bdac, cadb, cdab, dcba, dbca, we are done. O

Lemma 2.4. Let A is of type Dl(l) and g = g(A) is the associated Lie algebra. Then

there are 8 possible enumerations of 1,2,3,4 in (2-2).

Proof. Since 12 +34 = 14+ 32 = 0, (12 and 34) and (14 and 32) make cycle, a

contraction. Similarly, (21 and 43) and (32 and 14) make cycle, a contraction.
Therefore, the remaining possibilities are; 1243, 1423, 2134, 2314, 3241, 3421,

4132, 4312, we are done. O
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In the case when a is the initial vertex and b, ¢, d are dotted vertex on the diagram
marked in this order, we also write abcd.

Lemma 2.5. Let A is of type Dl(l) and g = g(A) is the associated Lie algebra and
let ningnsny be one of the 8 possibilities in the Lemma 2.4. Then ng cannot follow
immediately after no.

Proof. Note that the possibilities for nong are 24, 42, 13, or 31. Suppose that there
is no vertex marked between ny and n3z. Then o;_1 — oy, —y_1 + ¢, oy_1 + oy, or

—qg-1 — oy is a root, a contradiction. O

Let x, y be elements on the diagram. We will say that two different vertices
z and y are sterile if z—y is not a root. We know 0; and 0; are sterile if i +j = 2] -2
r(4,5) = (I - 1,1 = 1).
We have the following Lemma.

Lemma 2.6. If two vertices x and y are sterile, then z and y are not nexrt imme-

diately to each other.

Proof. Suppose that  and y are adjacent vertices. Then z — y is a root, a contra-
diction. O

Lemma 2.7. Let 51525384 be one of the 8 possible enumerations of a,b,c,d in the
Lemma 2.3 and let ninongng be one of the 8 possible enumerations of 1,2,3,4 in
the Lemma 2.4. Then there are 6 possible enumerations of 1,2,3,4 and a,b,c,d.

Namely,
5182M1M2N37145354, S1M1852M2M353M454, S1717128253M3704 54,
11N281828384M3M4, T7T11817M28283MN384M4, M]185182M2M38354M4.
Proof. Since la+3d=1b+3c=4a+2d=2a+4d=4b+2c=2b+4c=3b+ 1c=
3a 4+ 1d = 0 and siny + S4m4 = S1M4 + S4N1 = S1Ng + S4N3 = S1N3 + Sang =

Somy + $3M4 = SoNg + S3N1 = SNy + S3ng = s9ng + s3ng = 0. By Corollary 2.2, only

6 enumerations are permitted, we are done. O

Proposition 2.8. There exist at least two vertices on the diagram which are not

marked.

Proof. Suppose that n; is the initial vertex and n4 is the terminal vertex, then one

of £ay_1 + oy, is a root, a contradiction. If s; is the initial vertex and s4 is the
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terminal vertex, then one of 201 + 205 + -+ + 205 or —(2a3 + - - - + 2¢4) is a root, a
contradiction.

Consider the 6 possible enumerations in Lemma 2.7. In case of [ = 4, there is no
vertex on the diagram different from 1,2, 3,4 and a,b,¢,d. If sy is the initial vertex,
then (ng and s4) or (szand s4) cannot be marked. In the case when n, is the initial
vertex, (szandny) or (ngands,) cannot be marked, we are done,

Assume that { > 4. Among the 6 enumerations, consider the case

§18eN1N2N3TI45384.
Since s; and s4 are sterile, there exists a vertex z; with z;5; on the diagram

different from a, b, ¢, d, 1, 2, 3 and 4. Let g1 be the sterile vertex with z;. Then we
have 10 enumerations as follows:
Y1T181 82N N3ty 8384, L1Y15182M11N3N45354, T181Y182N1NaN3T1483584,
T18182Y1T 1 NaN3N48384, L18182N1Y1N2T3N45384, £18182M1N2Y 113745354,
L18182M1N9N3Y1M48384, T18182MN1TIoNgTI4Y 15354, L1818 NaN3N4S3Y1 84,
T18182MN1NeN3"48354%1 -

Since z18; +y154 = 0, 11 cannot be marked or there exists a vertex zg with z9x;.
‘We can repeat this process only finite times. Thus we can find z,, with z,s; such
that its sterile vertex y,, cannot be marked. On the other hand, there exists u;
with nouyng. Then its sterile vertex v; cannot be marked or there exists up with
ngugting or naujugns. After finitely many steps, we can find u; such that its sterile

vertex cannot be marked, we are done.
Remaining cases are treated in the same manner. i

Ba Bs

Ba as

s e



72 YEONOK KM

Ezample. In Dél), 6 = a1 + 200 + 2a3 + a4 + a5, and hence ht(d) = 7. B =
ar+agtas, o= 04,03 = —ag—0a3 —aq, By = ag+az+as, B5 = —az —
as, B = az + a4 + as, 07 = az. The process can go no further. If Bg = ag, then
B2 + B3 + B7 + Bs = 0, a contradiction. If Bz = —a; — 2ag — 2a3 — a4 — as, then
B1 -+ Bo + B4 + Bz = 0, a contraction. Thus ¢ and d cannot be marked.

Proposition 2.9. Let A be of type Dl(l) and g = g(A) be the associated Lie algebra
and let {s,} the sequence constructed in (2-3). Then the number of terms of the
sequence {sp} cannot exceed 21 — 3, the height of 6.

Proof. In the diagram in (2-3), the bending line of s; = B1 uses two vertices, s =
B1 + B uses 2+1 vertices. Thus s; uses t + 1 vertices on the diagram. There are 2!
vertices on the diagram in (2-3) and one is the initial vertex. Since no vertex can
be used twice by Proposition 2.3, Proposition 2.8 shows that the maximum number

to which the addition is allowed is also 20 — 1 — 2, we are done. O

Let w be an element of W.
(2-5) Construct a sequence

{9+ } in AT(w) and k11 = 7k + for some v, 7, € AT (w).

We have the following Theorem.

Theorem 2.10. The number of terms of the sequence {g, } in (2-3) cannot exceed
2l — 3, the height of 0.

Proof. Let v, = Bx +ngd for B € X UY, k—1,2,.... Then we have the sequence
{Bx} in X UY such that fg4y1 = B + 0 for some § € X UY. But the number of
sequence {0k} cannot exceed 2l — 3 by Proposition 2.9 , we are done. D

Corollary 2.11. There exists a sequence {g, } satisfying the conditions in (2-3)
which has exactly 2l — 3 terms.

Proof. Let w = wy as in Proposition 1.5 and let vy, = 0. Since the sequence 6, has
20 — 3 terms and A1 (wp) = L, the sequence {gg, } is a desired sequence. a
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