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A SURVEY OF BLOCH CONSTANTS

JoNG Su AN

1. Introduction

We begin with a brief survey of some of the known results dealing with Bloch
constants. Bloch’s theorem asserts that there is a constant B;.¢(1,0) such that
if f is holomorphic in the open unit disk D and normalized by |f'(0)| > 1, then
the Riemann surface of f contains an unramified disk of radius at least B ¢(1,0)
(see[7,p.14]). Pommerenke[6] introduced the locally schlicht Bloch constant

By.c(1,0) > B1.¢(1,0).

The classical notion of Landau constant applies to holomorphic mappings of D into
the complex plane C. Then we relate these Landau constant to the Bloch constants.
We know that Be,.c(1,0) < Le(1,0), where Le(1,0) denotes the Landau constant.
The exact value of these constants is still unknown, but the following bounds have
been established:

V3 3 _ 1 I(1/3)(11/12)
0433<T<_+10 < B1.c(1,0) < = T(1/4)

< 0.4719

(1/3)I(5
0.5 < Boo.c(1,0) £ Le(1,0) < —(—{Ti—/—é)—/q < 0.5433,
where I' denotes the Gamma function. Basic material and associated distance
function that is required for the definition of Bloch constants and Landau constant
is presented in Section 2. In Section 3 we exhibit a unified approach to obtaining
upper and lower bounds for other Bloch constants. Section 4 is devoted to the
Landau constant and analogs. In Section 5 we investigate that the Bloch constant
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for the family of all non-constant meromorpic functions on C lies between § and

2arctan(715). In addition,we give that the Bloch constant for the family of locally

schlicht meromorphic functions on C is

2. Notations and terminology

Let Q be Riemann surface. For m € Z7%, let F,(D, ) denote the family of all
analytic function f : D —  such that any ¢ € f(D) each root of f(p) = ¢ is
either simple or has multiplicity at least m + 1. The family of all analytic functions
f: D —  is simple is denoted by Foo(D,). We view Ry, the Riemann surface
of f, as being spread over . In order to measure the size of unramified disks on
R,we need to fix a distance function on {2, where Q2 is one of D, C' and the Riemann
sphere P. Let

zZ—w

5D(z,w)=|1_m_z| if z,w € D,

bc(z,w) = |z — w| if z,weC,
z2—w .

6p(z,w)—|1+wzl if z,w € P.

Let f € Fro(D,9),Da(a,r) = {z € Q: éa(a,2z) < r} is called the open disk in 2
with center a and radius r. For p € D set

ra(p, f) = sup {r : Da(f(p),r) is an unramified disk contained in Ry}.

Also, define
ra(f) = sup{ra(p, f) : p € D}.
Set
b, _ A= lPIF G
Pe=rer
FO(2) = (1= |21")IF (2,
fP(z) — (1 — |z| )‘f,(z)l

1+1f'(2)”
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Now we can introduce the various Bloch constants. For p € D and a > 0, let
Bpn.g(a,p) = inf {ra(f) : f € Fm(D,9Q) and f*(p) > a}.
Observe that By ¢(1,0) is the classical Bloch constant and Beo.c(1,0) is the locally
schlicht Bloch constant.

3.A bound for Bloch costants

Before establishing a lower bound for the Bloch constants, we introduce another
function. Let

RY/m+1
¢ (-t) —_ { (m41)tm/m+1(R2/m+1 _42/m+1)) m € Z+,
m —_ 1 B
2tlog(R/1)> m = oo.
Given s > 0,
Rm.o(s) = { s(mE2)(m+1)/2, me Z+.
m. Se, m _ w.

Let ¢m.s denote the function ¢,, with R replaced by Rp.c(s). The minimum value
of ¢m.s on the interval (0, Rp,.c(s)) is

[m(m+2)]'/? +
¢ms(s>={ mis 0 MEZT
51-3-, m = 00.

Let hm.c(s) = m m € Z% U {co}. Then hnm.c is strictly increasing on
(0,00). The inverse function is given by

hlo(a) = { alm(m +2)]'72, me Zt,
m.C s, m = oo.

The following distortion theorem is a result of D.Minda [9].
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Theorem 3.1. Let f € Fp,(D,C). If r¢(f) < s, then for pe D

c 1
f (p) < ¢’m.s('rC(p’ ) .

Theorem 3.2. Let p € D. Then ' (a) < Bm.c(a,p).

Proof. If By, c(a,p) = oo, then there is nothing to prove. Consequently, we may
assume that B, c(a,p) < oo. Let {f,}5%, be a sequence in Fy,,(D,C) such that
fE€(p) = a and r¢(fr) < Bm.c(a,p) + 1 = s,. Without loss of generality we may
assume that f,(p) = 0 for all n. Since r¢(fn) < s; for all n, Theorem 3.1 implies
that for any ¢ € D

fo(g) < !

1
b (0 F2))  Bron (51)

Then {f,}22, is a normal family, so we may assume that f, — f locally uniformly
on D. Hurwitz’s theorem implies that f € F,,(D,C). Clearly, f(p) = 0 and
f€(p) > a and rc(f) = Bm.c(a,p) = s. Now Theorem 3.1 applied to the function
f at the point p gives

for all n.

& < FO(p) < hm.c(s).
Since h,,.c is incerasing, we obtain a contradictionif s < h

B,.c(a,p). O

For o =1 and m = 1, oo we obtain @ < Bi.c(1,p), % < Beo.c(1,p). Ahlfors(2]
and Heins[3] established the lower bound ‘—{3 < By.c(1,p). In 1988 Bonk[11] im-
proved the lower bound on the Bloch constant to By.c(1,p) > @ + 10714, The
inequality % < Boo.c(1,p) was established by Ahlfors[2] and Pommerenke[6].

We know a upper bound for the Bloch constants by modifying the example of

Ahlfors and Grunsky[1]. We determined of Ry, ¢ € [0, ) as follow. For ¢ € [0, 3)
we require that

l.c(a) : hence h;l%c(a) <

_ [sin7r(5/6 + q/2)]1/2
7 ‘sinw(1/6 + ¢/2)

And we demands that

_ [—sin7r(5/6 + 'q/2)]1/2
1 sinm(1/6 + ¢/2) ’

,  q€][0,1/3).

q €[1/3,5/3).
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Then [4,p.367]

I'(5/6 + ¢/2)I'(2/3)

I'(1/6 +¢/2)T(4/3)

Define gm.q(2) = Ryfy fq/m+l(Rq/ -) for m € Z* U {oo} and q € [0,5/3). We
obtain

f4(0) =

R,['(5/6 +q/2)T'(1/6 + ¢/2(m + 1))
Ryym+1)T(1/6 + ¢/2)T(6/5 + ¢/2(m + 1))

Am.q = g;n.q(o) =

We consider the functions g,,.1/3 where m € Z+ U {o0}. Then
9m.1/3 € Fn(D.C) and re(gm.ay3) = 1 = Ryys.
This gives

am.1/3Bm.C(1’0) = Bm.C(am.l/aao) <1

or
1

Xm.1/3

Bm.C(l, 0) S

Thus we know

1 T(1/3)(11/12)

Bi.c(1,0) < =7 1(/9 < 0.4719,
Boo.c(1,0) < %2—%‘;’—/6—) < 0.5433.

In [4,p.368] the same method is used to obtain an upper bound for B c(1,0).
Pommerenke [6] cites 0.555 at the best known value of the locally schlicht Bloch
constant. Consequently, this value of 0.5433 is the best known value of the locally
schlicht Bloch constant.

4. Landau costant
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The classical notion of Landau constant applies to holomorphic mapping of D
into C. Let Rc(p, f) is the radius of the largest disk centered at f(p) which is
contained in f(D),

Rc(f) = sup{Rc(p, f) : p € D}.
For pe X and o > 0, let
Le(a, p) = inf{Rc(f) : f € Fi(D,C)andf(p) > a}.
Then L¢(1,0) is the classical Landau constant. Clearly, rc(p, f) < Re(p, f). Note
that Bi.c(a,p) < Lo(a, p).
Theorem 4.1. For p € D. Then 27 < Lo(a, p).
Proof. The proof of Theorem 4.1 follows just like the proof of Theorem 3.1.

By([9.Theorem 12]), we can show that the following Theorem 4.2
Theorem 4.2. B, .c(1,0) < L¢(1,0).

We consider the function g, 1,n € Z*, that were constructed in Section 3. In
the notation of Section 3 we obtain Lo(a, 1,0) < Ry/s. In particular, for n = 3
we get "
I'(1/3)I'(5/6)

I'(1/6)
So, we have Bo,.c(1,0) < Le(1,0) < 0.5433. This unpublished example and bound
was cited in a footnote to [2].

Le(1,0) < < 0.5433.

5. A bound for the Bloch constants for the meromorphic functions

Let P denote the Riemann sphere. These results have applications to mero-
morphic functions defined on C. Let Gn(C, P) denote the family of all noncon-
stant meromorphic functions f : C — P such that for each ¢ € f(C) each root
of f = ¢ is either simple or else has multiplicity at lest m + 1. For m = oo
this gives locally schlicht meromorphic functions. For p € C let rp(p, f) de-
note the radius of the largest unramified disk in Ry with centerf(p). Also, let
rp(f) =sup{rp(p, f) : p€ C}. Let

Em.p=mf{rp(f): f € Gu(C,P)}.

Now, we have a lower bound for the various Bloch constants E,, p.
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Theorem 5.1. E,, p > 2tan™!(, [72s) forme Z* U {oo}.

Proof. We shall assumption that f € Gm(C, P) and rp(f) < 2tan™!(,/-25). Sup-

pose X is a hyperbolic region in C and A x(z)|dz| is the hyperbolic metric on X which
has constant curvature —1. If f € G,,(C,P) and rp(f) < 2tan~!(s) where s <

2If'(p)| 1 PR
1+ 1f(p)* Ax(p) ~ ¥m(s)’

Where

1—s° —
28 ? m = 0.

m+ 2 —-ms?)V2(m — (m 2 me 2zt
¢M”={( +2 = ms)/2(m — (m +2)s%) €

This result is due to Minda[9] for X an arbitrary hyperbolic Riemann surface.
Then f € Gn(B(a, R), P) for any R > 0, where B(a,R) = {z: |z — a] < R}. The
hyperbolic metric for B(a, R) is R?L—ﬁz&jﬁ" Then we obtain

ff@ 1
1+ |f(a)|®> = Ripm(s)

If we let R — o0, then we get f'(a) = 0. Thus f is constant, which is a contradiction.
O

For m = 1 we obtain
Eyp2 ¥ ond Eep > I

Now we give a upper bound for E, p in case m = 1, co. The exponential function
1s meromorphic on C. Since the image can never contain a spherical disk which is
a larger than a hemisphere. Thus rp(exp) = . This implies that E, p < 3 since
exp is locally schlicht. Next we know that

1
Eip< 2arctan(7§).
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Ahlfors and Grunsky[1l] gave an upper bound for the classical Bloch constant. By
a natural extension of the idea involved in the construction of the Ahlfors-Grunsky
example. Let A;/3 be the euclidean triangle with 1,w and w? where w = exp(2—;”—).

Let Ay/3 be the regular circular triangle which has all interior angles of size s

3
and vertices at the point %, % and \“’/—; Let ¢ be thg unique conformal mapping
Aqyzon Dgy3 which satisfies the condition g(w’) = % Then ¢ € G1(C, P) and

rp(g) = 2arctan( —\}—5 ). Consequently

1
E,p< ‘_),arctan(—\/_—z).

So we have

1
% <E p< 2arctan(7§-).

We also obtain results for Bloch constants for meromorphic functions on compact
Riemann surfaces in [8].
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