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QR DECOMPOSITION IN NONLINEAR
EXPERIMENTAL DESIGN

IM GeoL OH

ABSTRACT. The D-optimal design criterion for precise parameter estimation in non-
linear regression analysis is called the determinant criterion because the determinant
of a matrix is to be maximized. In this thesis, we derive the gradient and the Hessian
of the determinant criterion, and apply a QR decomposition for their efficient com-
putations. We also propose an approximate form of the Hessian matrix which can
be calculated from the first derivative of a model function with respect to the design

variables. These equations can be used in a Gauss—Newton type iteration procedure.

1. Introduction

Many problems arising in science and engineering can be described by the nonlinear

regression model

y’—“f(xv a)+€

where f(x,0) is the response function and € = (e1,¢3,- - ,€,)7 is an n x 1 vector
of unobservable experimental errors. The response function f(x,8) is a function
of x = (z1,Z9, - ,2x)7, k—dimensional vector of independent variables, and 6 =
(61,62, - ,GP)T is a p—dimensional vector of unknown parameters.

When observed values of x and y are available, the main goal in nonlinear re-

gression analysis is to obtain precise estimates of the model parameters # which can
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be used further in predicting the future values of the response variable or in ex-
plaining the proposed functional structure. From the point of view of experimental
design, however, the objective is to find “good” design points x under some criteria
at which values of y are to be observed.

Several design criteria in the nonlinear regression case were proposed for each dif-
ferent specific purpose. For example, see Atkinson and Fedorov (1975), Box(1971),
Draper and Hunter (1967), and Hill et al. (1968). For precise parameter estimation
the D-optimal design criterion is proposed by Box and Lucas (1959). Suppose we
want N design points X, n = 1,2,.-- | N, then under this criterion, these points
are chosen to minimize the determinant of the variance-covariance matrix of the

parameter estimates (apart from o?), or, equivalently, to maximize the determinant
VI (1.1)

where V is the N x P derivative matrix whose (n, p)th element is {V},, = ﬂ%f‘—).
This D-optimal design criterion can be interpreted as to minimize the generalized
variance of the parameter estimates, or geometrically it corresponds to minimizing
the volume of the joint confidence region of the parameter estimates.

Unlike the D-optimal design criterion for the linear regression models, the deter-
minant criterion (1.1) is the function of the unknown parameters 8. Hence selection
of the ’best’ IV design points depends, paradoxically, on the actual values of the P
unknown parameters, as pointed out by Cochran (1973), Box and Lucas (1959). In
practice, preliminary estimates, or estimates from the previous data, would have to
be used.

Obtaining design points using the determinant criterion is a nonlinear optimiza-
tion problem, in which we find the NK values of x,, n = 1,2,-- | N which maxi-
mize their nonlinear objective function [VZ'V|. In order to utilize a Gauss~Newton
type iteration procedure, therefore, it is necessary to develop the gradient and the

Hessian of |VT V| with respect to X,. In the next section, we derive those and we
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suggest a compact computing scheme in Section 3. In section 4, we are reported

the Concluding Remarks

2. Derivation of the Gradient and the Hessian

Collecting the N design points X,, n = 1,2,--- , N, we can form an N x K design
matrix X = {z,}, and the determinant |VTV| is considered as the function of X
with known 8. We derive the gradient and the Hessian of [VTV| with respect to
X by generalizing the approach used in Bates and Watts (1985) for optimizing the

multiresponse parameter estimation criterion.

2.1 Gradients.

Consider the function )
9(X)=73In [VTV| (2.1)

for which derivatives with respect to elements of X are given by (Fedorov, 1972)

%X _ ((VTV)—1 vr 2V )

6:c,,k afl)vr,k
(2.2)
ov
=tr(V*t
r ( ank)
where V* = (VTV)~1VT is the pseudo-inverse of V. Hence we obtain
AVTV| T v
—— = 2|V +
. [V3V| tr <V al'nk) (2.3)

2.2 Hessian.
Four-dimensional array is needed to express the Hessian of [VTV| with respect

to the design matrix X. To simplify notation, we use the vec operator (Searle,
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1982) which transforms a matrix to a vector by packing each column of the matrix
into a vector. For example, q = vec(X) is the N K-dimensional ector whose first
N elements are the first column of X, the next N elements are the second column,
and so on.

Denoting by ¢; and ¢, the tth and sth element of q, the (¢, s)th element of the
Hessian matrix of g(X) with respect to q is given by

_ 9%9(X)
b0 = B84,
ov ov
— + 77 +
=u [V 0qq v 3%]
_ (2.4)
AAN A%
+ vH\T [ 9V _ T
b |V V) (aqt) (1 vV )(aq>]
[ *vV
+
+ tr -V ataqs]

This is obtained by using the expression for the derivative of the pseudo-inverse
from Golub and Pereyra (1973).
Since T, is an element of q, we can express equation (2.2) and (2.3) as
T .
Bqt BQt
(2.5)

The Hessian of [VTV]| is calculated using the relationship
?|VTV|

= 2|VTv ++2 2.6
aqtaqs l |(gt, + gt 93) ( )
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Evaluation of equation (2.4) requires the second order derivatives of the model
function f(x,0) with respect to the design points. Since the last term in the right-
hand side of (2.4) has little effect on the overall performance of the iteration proce-

vTv| . . .
dure, we replace the terms 3651, by zero to provide an approximate Hessian as
suggested by Bates and Watts (1985). Evaluation of equations (2.5) and (2.6) can

then be done by using V and its first derivative to the design points.

3. A Computing Scheme Using QR Decompsition

Computations of the gradient and the Hessian are simplified by considering the QR
decomposition of V as V = QR, where Q is the NV X N and orthogonal and R is
N X P and zero below the main diagonal. Let Ry be the P x P triangular matrix,
composed of the first P rows of R and Q; the first P columns of Q. Then V can

be written as V = Q;R; and the determinant criterion is computed as
P
IVIV] = |RTR4| = [[{R:}}
=1

That is, the objective function is evaluated simply by computing the product of the
square of the diagonal elements of P x P matrix R;, which is of very small size in
most cases.

QR decomposition of V can also be used in computing the gradient and Hessian.

First, pseudo-inverse of V is expressed as
vt =(vTv)"IvT = R[1Q7.

Gradient in equation (2.5) is then computed by, using the relationship tr(AB) =
tr(BA),
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oIvTv _
_'_5—' = 2|[VTV| tr (QT VihR)
qt
P
= 2[VTV| ) e
i=1
where V() = % and ¢;;; is the (¢,2)th element of the N X P matrix C; =

QTV(t) I{._-l .
Matrix C; is more useful in computing the Hessian. We can show that g;, in

equation (2.4) is identical to

="§ E Ct,ii Cs,j5 + E E Ct,ij Cs,ij-

i=1 j=1 i=P+1 j=1
That is, to obtain g¢;, the elements of C,; below the Pth row are multiplied by
the corresponding elements of C, and the sum of the products is formed. From
this, the sum of the products of the elements of C; in the first P rows with the
corresponding elements in CT is subtracted. Hence the approximate Hessian can
be computed by
|VTV|
04:9qs

=4 |VTV] ( EP: c:,u) (JZ:; cm‘j) (3.1)

=1

P P N P
+ 2 [VTV| (—ZZC:,.‘J‘ Cs,5i + Z th,ij Cs,ij)

i=1 j=1 i=P+1 j=1

Equation (3.1) permits very efficient evaluation of the Hessian, because once the

QR decomposition of V is done and the matrices C;,t =1,2,--- , P are formed, it
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is only necessary to collect a few inner products. Although QT occurs as a factor
in Cy, the matrix Q is not explicitly formed; instead, a product such as QTV(t) is
formed by applying Householder transformations to V() (Dongarra et al., 1979).

4. A Concluding Remark

Applying the QR decomposition in nonlinear experimental design was core part of
this thesis. At first, we derive the gradient and the Hessian of the determinant
criterion, which is the D-optimal design criterion for the precise estimation of the
model parameters. We showed how effienctly these quantities and the objective
function can be computed using the QR decomposition of the derivative matrix V.

For the future study, the first work should be the implementation of the com-
puting algorithms developed in this thesis. Although a few experimental design
software for the linear model are being used, none have been proposed for the non-
linear model. It may be possible to find the values of x,, which maximize [VTV]|
without using the derivatives. However, utilizing the gradient and Hessian would
help to speed up the iteration procedure and to locate the exact optimal point.
Whatever method we use, there is an inherent difficulty in implementing an opti-
mization algorithm for experimental design, which is due to the interchangeability
of the design points. For example, if (z}, 23) is an optimal point, then so is (z3, z}).
To handle this problem, we may have to impose some constraints on the design
space such as a < 3 < 22 < b. Since constrained optimization is usually more
difficult than unconstrained one, a way to avoid this kind of constraints would be

desirable.
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