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LIMIT SETS AND PROLONGATIONAL LIMIT
SETS IN DYNAMICAL POLYSYSTEMS

YooN HoE Gu AND DAE HEE Ry

1. Introduction

In stability theory of polysystems two concepts that play a very important role are
the limit set and the prolongational limit set.

For the above two concepts, A.Bacciotti and N.Kalouptsidis studied their prop-
erties in a locally compact metric space [2]. In this paper we investigate their results
in c-first countable space which is more a general space than a metric space.

Let X be a locally compact c-first countable space unless otherwise stated, Rt
the set of nonnegative real numbers and 2% the set of all subsets of X. A dynamical
system on X is a continuous map 7 : X x R — X with the following properties :

(a) m(z,0) =z forallz € X

(b) m(n(z,s),t) = n(z,s +t) for all z € X and s,t € R.

We call a family of dynamical systems {m;|i € I} a dynamical polysystem on X.

2. Limit Sets

The purpose of this section is to introduce the concept of the limit set and extend

some of their properties stated in [2] to c-first countable space.
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Definition 2.1. For a polysystem {=;|: € I} with reachable sets R(z,t) its limit
set at a point z is defined as

A(z) = {y € X| there exist sequences t, — 400,y, — y such that y, €
R(z,tn)}.

The next proposition provides alternate description of the limit set.
Proposition 2.2. For any z in X, A(z) = (,cq+ R(z, [t,00)).

Proof. Let y € A(z). Then there exist sequences t, — +00,y, — y such that
yn € R(z,t5). For each t € R*, since t, — +00, we may assume that t, > t for
all n. Thus we have y, € R(z,t,) C R(z,[t,o0)). This shows that y € R(z,[t,0)).
Since t is arbitrary, y € ter];+R(:z:, [t, 00)).

Conversely, let y € (),epq+ B(z,[t,o0)). We can choose a countable basis (U, ) at
y with Upqy C Up. For all integers n, since y € R(z, [n,0)), U, N R(z, [n,)) # ¢.

Therefore there exists y, € U, N R(z,[n,o0)) with y, — y. Also, there exists
tn > n such that y, € R(z,t,). It is clear that t, — +co. Hence y € A(z) and the

proposition is proved.

A following corollary follows from the above proposition and the finite intersec-
tion property.
Corollary 2.3. Forallz € X,

(1) A(z) is closed and positively invariant.
(2) Let R(x) be a compact subset of X.

Then A(z) is nonempty.

In a dynamical system w, the limit set is related to the closure of the positive

orbit in the following way

1Hz) = v (2) U A¥(2)
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In order to state an analogous relation for dynamical polysystems, we consider

the following definiton.

Definition 2.4. R*(z,t) = {y € X| there are sequences y, — y,t, — t such that
yn € R(z,t,)}.

Propersition 2.5. R(z) = R*(z,R*)U A(z).

Proof. Let y € R(z). Then there is a sequence y, € R(z) such that y, — y.
Therefore, there is a sequence t, € R such that y, € R(z,t,). We may assume
that either ¢, — t € Rt or t, — +00. In the first case y € R*(z,t) by definition.
In the second case y € A(z) by definition. Hence y € R*(z,RT) U A(z).

Conversely, we prove that B(z) D R*(z,R*)U A(z). A(z) C R(z) holds always.
For any t € R,

R*(z,t) C R(z,[0,s]) C R(z,R*) = R(x) for s > 1.

Thus we have R(z) D R*(z,R*) U A(z) and the proposition is completed.
The following proposition is useful in the study of attractivity properties.
Proposition 2.6. Let t € R*,z € X and y € R*(z,t). ThenA(y) C A(x)

Proof. To avoid cumbersome notation, we write the expression w = m; (--+,
k . .

T, (z,t1), ++ ,tk) € R(z,t),d ;—qti = t as w = 7w(2, - 4k, %, t1, -+ ,tk). By

assumption, there are sequences ym — y,tm — t such that y,, € R(z,tm). Let

z € A(y). Then there are sequences z, — 2,8, — 400 such that z, € R(y,sn).

For any integer n, there are if,---,if € I and r{,--+,rp € R* such that
kn
Y ord = snyzn = 7(if, 448,975, sk, ) Let (Un) be a basis at z with
j=1

U, D Un4+i. Then there is an integer n; such that z,, € U;. Also, there is an

) _ m .
integer m; such that wy = w(:7*,- - ,z;::l s YmasTy st ,r:'tl) € U;. We can choose
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an integer ny > n; so that z,, € U;. Thus there is an integer my > my, such
that wy = w(e72,-- -, z;::z s YmasT12y r;::z) € U;. Continuing this process, the re-
sulting sequence w; converges to z. Here, w; € R(Yym;,5n;) C R(R(Z,tm; ),5n;) =

R(z,tm; + $n; ). Since tm; 4+ sp; — +00,2 € A(x). This completes the proof.

The next theorem indicates that the positive orbit of a point z is attracted A(z)

if compactness is assumed.

Theorem 2.7. If a limit set A(z) is nonempty and compact, then for any neigh-
borhood U of A(z), there is at € R* such that R(z,[t,00)) C U.

Proof. Suppose that the conclusion is not true. Then there is a neighborhood
U of A(z) such that for all ¢t € R*, R(z,[t,00)) ¢ U. Choose a neighborhood
V of A(z) so that V is compact and V C U. For all t € R*, R(z, [t,00)) ¢ V.
Let y € A(z). Since A(z) C R(z,[n,0)) and V is a neighborhood of y, there
exists t, > n such that R(z,t,) NV # 4. Also, there exists s, > t, such that
R(z,s,) N (X — V) # ¢. Since R(z, [t., s»])is connected, there is a sequence r, €
[tn,ss] such that R(z,r,) N8V # ¢. Let z, € R(z,r.)NIV. Since JV is compact,
there exists a sequence z, — z € 8V. Since rn — 400,z € A(z). This is a

contradiction. Thus the theorem is proved.

3. Prolongational Limit Sets

We introduce the concept of the prolongational limit set and extend some of its

basic properties stated in [2] to c-first countable space.

Definition 3.1. Let z in X. The prolongational limit set of z is a subset J(z) =

N R(U,[t,0)), where N(z) is a family of all neighborhoods of z.
UeN(z),teRt

It is obvious that J(z) is closed, positively invariant and A(z) C J(z).
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The following proposition indicates alternate description of the prolongational

limit set.

Proposition 3.2. J(z) = {y € X| there are sequences , — Z, yp — y,t, — +00
such that yn € R(zn,ts)}.

Proof. Let y € J(z). Take a basis at = and y, (U,) and (V,,), respectively, with
Un D Upt1, Vo D Vuy1. Then from definition of J(z), for any integer n, we have
R(Uy,[n,00)) NV, # ¢. Thus there are sequences £, € Upn,yn € Vy,tn > n such
that y, € R(zn,tn). Therefore, z, — z,y, — y and t,, — 4o00.

Conversely, suppose that there are sequences z, — z,y, — y and ¢, — +o0
such that y, € R(z,,t,). For any neighborhoods U, V' of z and y, respectively, and
t € Rt, there exists an integer m such that z,, € U,y € V,tm > t. Thus we have
R(U,[t,0)) NV # ¢ and so y € R(U, [t,0)). Since U is any neighborhood of z,
y € J(z). Hence the proposition is proved.

In order to state the relation between the prolongation set and the prolongational
limit set, we consider the multivalued map DR : X x Rt — 2% defined by the

following definition.

Definition 3.3. For each z in X and t in R*, DR(z,t) = {y € X| there exist

sequences In — ,Yn, — y and t, — t such that y, € R(zn,t,)}.
We let DR(z,R") = J,eg+ DR(z,1).

Proposition 3.4. For each z € X it holds

DR(z) = DR(z,R*) U J(z).

Proof. Let y € DR(z). Then there exist sequences =, — z,y, — y and ¢, € Rt
such that y, € R(z,). We may assume that either t, —» ¢t € Rt or t, — +o00. In
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the first case, we have y € DR(z,t) by definition and so y € DR(z,R*). In the
second case, y € J(z) by definition. Thus DR(z) C DR(z,R*) U J(=z).

Next we will prove DR(z) D DR(z,R*)U J(z). Let y € DR(z,R*) U J(z). If
y € DR(z,Rt), then there is ¢ € R* such that y € DR(z,t). Thus there are
sequences rn, — Z,Y, — y and t, — ¢t such that y, € R(zn,t,). By definition,
y € DR(z). If y € J(z), then there are sequences z,, — z,y, — y and t, — +o00
such that y, € R(zn,t,). Clearly, y € DR(z). The converse is proved. Hence the

propositon is complete.

Proposition 3.5. Let J(z) be nonempty and compact. Then A(z) is nonempty

and compact.

Proof. Suppose that A(z) is empty. We claim that R(z)NJ(z) = ¢. Let R(z) ) J(z)
# 6. Then there is y € R(z) N J(z). By proposition 2.5, we have R(z) = R*(z,R*)
and so y € R*(z,t) for some t € Rt. By propositon 2.6, A(y) = ¢. Since J(z)
is closed, positively invariant and y € J(z), R(y) C J(z). From compactness of
J(z), R(y) is compact. By corollary 2.3, A(y) # ¢. This is a contradiction. Thus it
follows that R(z) () J(z) = ¢.

Let us show that there exists a neighborhood U of J(z) such that U is compact
and U N R(z) = ¢. For all y € J(z),y & R(z). Thus there exists a neighborhood
Vy of y such that V, N R(z) = ¢. We choose a neighborhood U, of y so that
U, is compact and U, C V,. A family {U,|ly € J(z)} is and open cover of J(z).
Since J(z) is compact, there is a finite subconver {Uy,lyi € J(z),i = 1,2,--- ,n}.
It follows that J(z) ¢ U%,U,, C UL,U,, = UL, U, C UL,V,,. Set UL, U,
by U. Then U is compact and U N R(z) = ¢. Fix ¢ and take ¢, — +oo. We
have m;(z,t,) € R(z) and so m;(z,t,) € X — U. By continuity of «;, there is a
nighborhood V,, C Uy, of z such that m;(V,,t,) C X — U, where (U,) is a basis at
with U,, D Up41. For each n , there exists a sequence s, > t,, and z,, € V, such that
UNR(zn,8s) # ¢- Since mi(zn,tn) € Ti(Va,tn) C X —U and 7i(2n,s) € R(2n,tn),
we have R(zn,tn) N (X — U) # ¢. From connectedness of R(zx, [tn,sn]), there is a
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sequence T, € [tn, $n) such that R(z,,t,)NAU # ¢. We choose z, € R(zy,t,)NOU.
Since AU is compact, there is a sequence z, — z € 9U. It is obvious that z, — =
and r, — +oo. Therefore, z € J(z). This contradicts the fact that > ¢ J(z).
Thus A(z) is nonempty. That A(z) is compact is clear. Hence the proposition is

completed.

The next theorem states that a nonempty compact prolongational limit set uni-

formly attracts its positive orbit.

Theorem 3.6. Suppose that J(z) is nonempty and compact. Then for any neigh-
borhood U of J(x), there is a neighborhood V of z and t € R such that R(V, [t,00))
cU.

Proof. Suppose the conclusion is not true. Then there exists a neighborhood U
of J(z) such that for any neighborhood V of z and t € R*, R(V,[t,00)) ¢ U. We
choose a neighborhood W fo J(z) so that W is compact and W C U. Since A(z)
is nonempty and compact and W is a neighborhood of A(z), by theorem 2.7 there
exists ¢ € RY such that R(z,[t,00)) C W. Let t, — +oo with ¢, > t. Fix i.
We have 7i(z,t,) € R(z,tn) C R(x,[t,0)) C W. By continuity of =;, there is a
neighborhood V,, C U, of z such that ;(V,,t,) C W, where (U, ) is a basis at = with
Un D Unt1. Thus there is a sequence s, > t,, such that R(V,,s,) ¢ W. Let z,, € V,,
with R(zn,sn) ¢ W. Since mi(zn,tn) € 7i(Va,tn) C W and mi(2n,tn) € R(zq,tn),
we have R(zn,t,)NW # ¢. By connecdtedness of R(zn[tn,sn]), there is a sequence
Tn € [tn,Sn) such that R(zn,r,) NOW # ¢. Let z, € R(zpn,r,) N OW. Since OW
is compact, there exists a sequence z, — z € OW. We clearly have z, — = and

rn — +00. Thus z € J(z). This is a contradiction. Hence the theorem is proved.
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