The Pure and Applied Mathematics 2 (1995), No 2, pp. 149-156 J. Korea Soc. of Math. Edu. (Series B)

LIMIT SETS AND PROLONGATIONAL LIMIT SETS IN DYNAMICAL POLYSYSTEMS

YOON HOE GU AND DAE HEE RY

1. Introduction

In stability theory of polysystems two concepts that play a very important role are the limit set and the prolongational limit set.

For the above two concepts, A.Bacciotti and N.Kalouptsidis studied their properties in a locally compact metric space [2]. In this paper we investigate their results in c-first countable space which is more a general space than a metric space.

Let X be a locally compact c-first countable space unless otherwise stated, \mathbb{R}^+ the set of nonnegative real numbers and 2^X the set of all subsets of X. A dynamical system on X is a continuous map $\pi: X \times \mathbb{R} \to X$ with the following properties:

- (a) $\pi(x,0) = x$ for all $x \in X$
- (b) $\pi(\pi(x,s),t) = \pi(x,s+t)$ for all $x \in X$ and $s,t \in \mathbb{R}$.

We call a family of dynamical systems $\{\pi_i | i \in I\}$ a dynamical polysystem on X.

2. Limit Sets

The purpose of this section is to introduce the concept of the limit set and extend some of their properties stated in [2] to c-first countable space.

Typeset by A_MS -TEX

Definition 2.1. For a polysystem $\{\pi_i | i \in I\}$ with reachable sets R(x,t) its limit set at a point x is defined as

 $\Lambda(x) = \{ y \in X | \text{ there exist sequences } t_n \to +\infty, y_n \to y \text{ such that } y_n \in R(x, t_n) \}.$

The next proposition provides alternate description of the limit set.

Proposition 2.2. For any x in X, $\Lambda(x) = \bigcap_{t \in \mathbb{R}^+} \overline{R(x, [t, \infty))}$.

Proof. Let $y \in \Lambda(x)$. Then there exist sequences $t_n \to +\infty, y_n \to y$ such that $y_n \in R(x,t_n)$. For each $t \in \mathbb{R}^+$, since $t_n \to +\infty$, we may assume that $t_n \geq t$ for all n. Thus we have $y_n \in R(x,t_n) \subset R(x,[t,\infty))$. This shows that $y \in \overline{R(x,[t,\infty))}$. Since t is arbitrary, $y \in \bigcap_{t \in \mathbb{R}^+} \overline{R(x,[t,\infty))}$.

Conversely, let $y \in \bigcap_{t \in \mathbb{R}^+} \overline{R(x,[t,\infty))}$. We can choose a countable basis (U_n) at y with $U_{n+1} \subset U_n$. For all integers n, since $y \in \overline{R(x,[n,\infty))}, U_n \cap R(x,[n,\infty)) \neq \phi$. Therefore there exists $y_n \in U_n \cap R(x,[n,\infty))$ with $y_n \to y$. Also, there exists $t_n \geq n$ such that $y_n \in R(x,t_n)$. It is clear that $t_n \to +\infty$. Hence $y \in \Lambda(x)$ and the proposition is proved.

A following corollary follows from the above proposition and the finite intersection property.

Corollary 2.3. For all $x \in X$,

- (1) $\Lambda(x)$ is closed and positively invariant.
- (2) Let $\overline{R(x)}$ be a compact subset of X.

Then $\Lambda(x)$ is nonempty.

In a dynamical system π , the limit set is related to the closure of the positive orbit in the following way

$$\overline{\gamma^+(x)} = \gamma^+(x) \cup \Lambda^+(x)$$

In order to state an analogous relation for dynamical polysystems, we consider the following definiton.

Definition 2.4. $R^*(x,t) = \{y \in X | \text{ there are sequences } y_n \to y, t_n \to t \text{ such that } y_n \in R(x,t_n)\}.$

Propersition 2.5. $\overline{R(x)} = R^*(x, \mathbb{R}^+) \cup \Lambda(x)$.

Proof. Let $y \in \overline{R(x)}$. Then there is a sequence $y_n \in R(x)$ such that $y_n \to y$. Therefore, there is a sequence $t_n \in \mathbb{R}^+$ such that $y_n \in R(x, t_n)$. We may assume that either $t_n \to t \in \mathbb{R}^+$, or $t_n \to +\infty$. In the first case $y \in R^*(x, t)$ by definition. In the second case $y \in \Lambda(x)$ by definition. Hence $y \in R^*(x, \mathbb{R}^+) \cup \Lambda(x)$.

Conversely, we prove that $\overline{R(x)} \supset R^*(x, \mathbb{R}^+) \cup \Lambda(x)$. $\Lambda(x) \subset \overline{R(x)}$ holds always. For any $t \in \mathbb{R}^+$,

$$R^*(x,t) \subset \overline{R(x,[0,s])} \subset \overline{R(x,\mathbb{R}^+)} = \overline{R(x)} \text{ for } s > t.$$

Thus we have $\overline{R(x)} \supset R^*(x, \mathbb{R}^+) \cup \Lambda(x)$ and the proposition is completed.

The following proposition is useful in the study of attractivity properties.

Proposition 2.6. Let $t \in \mathbb{R}^+$, $x \in X$ and $y \in R^*(x,t)$. Then $\Lambda(y) \subset \Lambda(x)$

Proof. To avoid cumbersome notation, we write the expression $w = \pi_{i_k}(\cdots, \pi_{i_1}(x,t_1),\cdots,t_k) \in R(x,t), \sum_{i=1}^k t_i = t \text{ as } w = \pi(i_1,\cdots,i_k,x,t_1,\cdots,t_k).$ By assumption, there are sequences $y_m \to y, t_m \to t$ such that $y_m \in R(x,t_m)$. Let $z \in \Lambda(y)$. Then there are sequences $z_n \to z, s_n \to +\infty$ such that $z_n \in R(y,s_n)$. For any integer n, there are $i_1^n,\cdots,i_{k_n}^n \in I$ and $r_1^n,\cdots,r_{k_n}^n \in \mathbb{R}^+$ such that $\sum_{j=1}^{k_n} r_j^n = s_n, z_n = \pi(i_1^n,\cdots,i_{k_n}^n,y,r_1^n,\cdots,r_{k_n}^n)$. Let (U_n) be a basis at z with $U_n \supset U_{n+1}$. Then there is an integer n_1 such that $z_n \in U_1$. Also, there is an integer m_1 such that $w_1 \equiv \pi(i_1^{n_1},\cdots,i_{k_{n_1}}^{n_1},y_{m_1},r_1^{n_1},\cdots,r_{k_{n_1}}^{n_1}) \in U_1$. We can choose

an integer $n_2 > n_1$ so that $z_{n_2} \in U_2$. Thus there is an integer $m_2 > m_1$, such that $w_2 \equiv \pi(i_1^{n_2}, \dots, i_{k_{n_2}}^{n_2}, y_{m_2}, r_1^{n_2}, \dots, r_{k_{n_2}}^{n_2}) \in U_2$. Continuing this process, the resulting sequence w_j converges to z. Here, $w_j \in R(y_{m_j}, s_{n_j}) \subset R(R(x, t_{m_j}), s_{n_j}) = R(x, t_{m_j} + s_{n_j})$. Since $t_{m_j} + s_{n_j} \to +\infty, z \in \Lambda(x)$. This completes the proof.

The next theorem indicates that the positive orbit of a point x is attracted $\Lambda(x)$ if compactness is assumed.

Theorem 2.7. If a limit set $\Lambda(x)$ is nonempty and compact, then for any neighborhood U of $\Lambda(x)$, there is a $t \in \mathbb{R}^+$ such that $R(x, [t, \infty)) \subset U$.

Proof. Suppose that the conclusion is not true. Then there is a neighborhood U of $\Lambda(x)$ such that for all $t \in \mathbb{R}^+, R(x, [t, \infty)) \not\subset U$. Choose a neighborhood V of $\Lambda(x)$ so that \overline{V} is compact and $\overline{V} \subset U$. For all $t \in \mathbb{R}^+, R(x, [t, \infty)) \not\subset \overline{V}$. Let $y \in \Lambda(x)$. Since $\Lambda(x) \subset \overline{R(x, [n, \infty))}$ and V is a neighborhood of y, there exists $t_n \geq n$ such that $R(x, t_n) \cap V \neq \phi$. Also, there exists $s_n > t_n$ such that $R(x, s_n) \cap (X - \overline{V}) \neq \phi$. Since $R(x, [t_n, s_n])$ is connected, there is a sequence $r_n \in [t_n, s_n]$ such that $R(x, r_n) \cap \partial \overline{V} \neq \phi$. Let $z_n \in R(x, r_n) \cap \partial \overline{V}$. Since $\partial \overline{V}$ is compact, there exists a sequence $z_n \to z \in \partial \overline{V}$. Since $r_n \to +\infty, z \in \Lambda(x)$. This is a contradiction. Thus the theorem is proved.

3. Prolongational Limit Sets

We introduce the concept of the prolongational limit set and extend some of its basic properties stated in [2] to c-first countable space.

Definition 3.1. Let x in X. The prolongational limit set of x is a subset $J(x) = \bigcap_{U \in N(x), t \in \mathbb{R}^+} \overline{R(U, [t, \infty))}$, where N(x) is a family of all neighborhoods of x.

It is obvious that J(x) is closed, positively invariant and $\Lambda(x) \subset J(x)$.

The following proposition indicates alternate description of the prolongational limit set.

Proposition 3.2. $J(x) = \{y \in X | \text{ there are sequences } x_n \to x, y_n \to y, t_n \to +\infty \text{ such that } y_n \in R(x_n, t_n) \}.$

Proof. Let $y \in J(x)$. Take a basis at x and y, (U_n) and (V_n) , respectively, with $U_n \supset U_{n+1}, V_n \supset V_{n+1}$. Then from definition of J(x), for any integer n, we have $R(U_n, [n, \infty)) \cap V_n \neq \phi$. Thus there are sequences $x_n \in U_n, y_n \in V_n, t_n \geq n$ such that $y_n \in R(x_n, t_n)$. Therefore, $x_n \to x, y_n \to y$ and $t_n \to +\infty$.

Conversely, suppose that there are sequences $x_n \to x, y_n \to y$ and $t_n \to +\infty$ such that $y_n \in R(x_n, t_n)$. For any neighborhoods U, V of x and y, respectively, and $t \in \mathbb{R}^+$, there exists an integer m such that $x_m \in U, y_m \in V, t_m \geq t$. Thus we have $R(U, [t, \infty)) \cap V \neq \phi$ and so $y \in \overline{R(U, [t, \infty))}$. Since U is any neighborhood of x, $y \in J(x)$. Hence the proposition is proved.

In order to state the relation between the prolongation set and the prolongational limit set, we consider the multivalued map $DR: X \times \mathbb{R}^+ \to 2^X$ defined by the following definition.

Definition 3.3. For each x in X and t in \mathbb{R}^+ , $DR(x,t) = \{y \in X | \text{ there exist sequences } x_n \to x, y_n \to y \text{ and } t_n \to t \text{ such that } y_n \in R(x_n, t_n)\}.$

We let $DR(x, \mathbb{R}^+) = \bigcup_{t \in \mathbb{R}^+} DR(x, t)$.

Proposition 3.4. For each $x \in X$ it holds

$$DR(x) = DR(x, \mathbb{R}^+) \cup J(x).$$

Proof. Let $y \in DR(x)$. Then there exist sequences $x_n \to x, y_n \to y$ and $t_n \in \mathbb{R}^+$ such that $y_n \in R(x_n)$. We may assume that either $t_n \to t \in \mathbb{R}^+$ or $t_n \to +\infty$. In

the first case, we have $y \in DR(x,t)$ by definition and so $y \in DR(x,\mathbb{R}^+)$. In the second case, $y \in J(x)$ by definition. Thus $DR(x) \subset DR(x,\mathbb{R}^+) \cup J(x)$.

Next we will prove $DR(x) \supset DR(x, \mathbb{R}^+) \cup J(x)$. Let $y \in DR(x, \mathbb{R}^+) \cup J(x)$. If $y \in DR(x, \mathbb{R}^+)$, then there is $t \in \mathbb{R}^+$ such that $y \in DR(x, t)$. Thus there are sequences $x_n \to x, y_n \to y$ and $t_n \to t$ such that $y_n \in R(x_n, t_n)$. By definition, $y \in DR(x)$. If $y \in J(x)$, then there are sequences $x_n \to x, y_n \to y$ and $t_n \to +\infty$ such that $y_n \in R(x_n, t_n)$. Clearly, $y \in DR(x)$. The converse is proved. Hence the proposition is complete.

Proposition 3.5. Let J(x) be nonempty and compact. Then $\Lambda(x)$ is nonempty and compact.

Proof. Suppose that $\Lambda(x)$ is empty. We claim that $\overline{R(x)} \cap J(x) = \phi$. Let $\overline{R(x)} \cap J(x) \neq \phi$. Then there is $y \in \overline{R(x)} \cap J(x)$. By proposition 2.5, we have $\overline{R(x)} = R^*(x, \mathbb{R}^+)$ and so $y \in R^*(x,t)$ for some $t \in \mathbb{R}^+$. By proposition 2.6, $\Lambda(y) = \phi$. Since J(x) is closed, positively invariant and $y \in J(x)$, $\overline{R(y)} \subset J(x)$. From compactness of J(x), $\overline{R(y)}$ is compact. By corollary 2.3, $\Lambda(y) \neq \phi$. This is a contradiction. Thus it follows that $\overline{R(x)} \cap J(x) = \phi$.

Let us show that there exists a neighborhood U of J(x) such that \overline{U} is compact and $\overline{U} \cap R(x) = \phi$. For all $y \in J(x), y \notin \overline{R(x)}$. Thus there exists a neighborhood V_y of y such that $V_y \cap R(x) = \phi$. We choose a neighborhood U_y of y so that $\overline{U_y}$ is compact and $\overline{U_y} \subset V_y$. A family $\{U_y|y \in J(x)\}$ is and open cover of J(x). Since J(x) is compact, there is a finite subconver $\{U_{y_i}|y_i \in J(x), i=1,2,\cdots,n\}$. It follows that $J(x) \subset \bigcup_{i=1}^n U_{y_i} \subset \bigcup_{i=1}^n \overline{U_{y_i}} = \bigcup_{i=1}^n \overline{U_{y_i}} \subset \bigcup_{i=1}^n V_{y_i}$. Set $\bigcup_{i=1}^n U_{y_i}$ by U. Then \overline{U} is compact and $\overline{U} \cap R(x) = \phi$. Fix i and take $t_n \to +\infty$. We have $\pi_i(x,t_n) \in R(x)$ and so $\pi_i(x,t_n) \in X - \overline{U}$. By continuity of π_i , there is a nighborhood $V_n \subset U_n$ of x such that $\pi_i(V_n,t_n) \subset X - \overline{U}$, where (U_n) is a basis at x with $U_n \supset U_{n+1}$. For each n, there exists a sequence $s_n > t_n$ and $s_n \in V_n$ such that $U \cap R(s_n,s_n) \neq 0$. Since $\pi_i(s_n,t_n) \in \pi_i(v_n,t_n) \subset X - \overline{U}$ and $\pi_i(s_n,t_n) \in R(s_n,t_n)$, we have $R(s_n,t_n) \cap (X - \overline{U}) \neq 0$. From connectedness of $R(s_n,t_n)$, there is a

sequence $r_n \in [t_n, s_n]$ such that $R(x_n, t_n) \cap \partial \overline{U} \neq \phi$. We choose $z_n \in R(x_n, t_n) \cap \partial \overline{U}$. Since $\partial \overline{U}$ is compact, there is a sequence $z_n \to z \in \partial \overline{U}$. It is obvious that $x_n \to x$ and $r_n \to +\infty$. Therefore, $z \in J(x)$. This contradicts the fact that $z \notin J(x)$. Thus $\Lambda(x)$ is nonempty. That $\Lambda(x)$ is compact is clear. Hence the proposition is completed.

The next theorem states that a nonempty compact prolongational limit set uniformly attracts its positive orbit.

Theorem 3.6. Suppose that J(x) is nonempty and compact. Then for any neighborhood U of J(x), there is a neighborhood V of x and $t \in \mathbb{R}^+$ such that $R(V, [t, \infty)) \subset U$.

Proof. Suppose the conclusion is not true. Then there exists a neighborhood U of J(x) such that for any neighborhood V of x and $t \in \mathbb{R}^+$, $R(V, [t, \infty)) \not\subset U$. We choose a neighborhood W fo J(x) so that \overline{W} is compact and $\overline{W} \subset U$. Since $\Lambda(x)$ is nonempty and compact and W is a neighborhood of $\Lambda(x)$, by theorem 2.7 there exists $t \in \mathbb{R}^+$ such that $R(x, [t, \infty)) \subset W$. Let $t_n \to +\infty$ with $t_n \geq t$. Fix i. We have $\pi_i(x, t_n) \in R(x, t_n) \subset R(x, [t, \infty)) \subset W$. By continuity of π_i , there is a neighborhood $V_n \subset U_n$ of x such that $\pi_i(V_n, t_n) \subset W$, where (U_n) is a basis at x with $U_n \supset U_{n+1}$. Thus there is a sequence $s_n > t_n$ such that $R(V_n, s_n) \not\subset \overline{W}$. Let $x_n \in V_n$ with $R(x_n, s_n) \not\subset \overline{W}$. Since $\pi_i(x_n, t_n) \in \pi_i(V_n, t_n) \subset W$ and $\pi_i(x_n, t_n) \in R(x_n, t_n)$, we have $R(x_n, t_n) \cap W \neq \phi$. By connecdtedness of $R(x_n[t_n, s_n])$, there is a sequence $r_n \in [t_n, s_n]$ such that $R(x_n, r_n) \cap \partial \overline{W} \neq \phi$. Let $z_n \in R(x_n, r_n) \cap \partial \overline{W}$. Since $\partial \overline{W}$ is compact, there exists a sequence $z_n \to z \in \partial \overline{W}$. We clearly have $x_n \to x$ and $r_n \to +\infty$. Thus $z \in J(x)$. This is a contradiction. Hence the theorem is proved.

REFERENCES

 N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer-Verlag, New York, 1970.

- 2. A. Bacciotti and N. Kalouptsidis, Topological Dynamics of Control Systems: Stability and Attraction, Nonlinear Analysis 10 (1986), 547-565.
- 3. J. Tsinias, A Lyapunov description of stability in control systems, Nonlinear Analysis 13 (1989), 63-74.
- 4. Y. H. Gu, Stability of Dynamical Polysystems, J. Chung Cheong Math. Soc. 7 (1994), 109-115.
- 5. J. S. Park, Stability in topological dynamics, J. Korean Math. Soc. 25(1) (1988), 67-76.

Yoon Hoe Gu
Department of Mathematics
Hanseo University
Seosan, 356-820, Korea

Dae Hee Ry
Department of Computer Science
Chungnam Sanup University
HongSung Chungnam, 350-800, Korea