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A SURVEY ON SYMPLECTIC GEOMETRY

JEONG KOO NAM

1. Introduction

A symplectic manifold is a pair (M,w) consisting of a smooth manifold M and a
non-degenerate closed 2-form w on M. Locally, w = Y w;jdz’ A dz? and dw = 0,
ij=1
where n = dim M. The condition dw = 0 implies that locally w = da with a =
3" ardzF. There are three main sources of symplectic manifolds.
k=1
(A) Phase space for classical mechanical systems

M = T*(N) is the cotangent bundle of a smooth manifold N, i.e., the configura-
tion space. T'(IV) is the position-velocity space and T*(N) is the impulse-coordinate
space. If ¢,--- , ¢™ are local coordinate in N, 8y, - , 8, the corresponding tangent
vector fields, p1,-- - , p the corresponding coordinates in the fibres of 7*(N) so that
< p,0; >= p;, then the 1-form o = Zn: pidq* is a canonically defined form which is

=1
invariant under Diff (V) and w = da is closed (even exact) and non-degenerate.

(B) Complex projective algebraic varieties

These are subvarieties of complex projective varieties P,(C) defined by algebraic

equations with a canonical Kahler form obtained by restricting the canonical I{ahler
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form w on Pp(C). If w = Re(w) + tIm(w), the real part Re(w) of w defines a
Riemannian metric and the imaginary part Im(w) defines a symplectic structure.
These can be thought of as a superization of an even and an odd part. The even

parts are Riemannian manifolds and the odd parts are symplectic manifolds.

(C) Coadjoint orbits of a Lie group

The study of coadjoint orbits of a Lie group is quite closely related to that of
irreducible unitary representations of G. The relation between these was given by
A. Kirillov [K1] in the case when G is a nilpotent Lie group. For a wide class of Lie
groups including but not restricted to nilpotent groups, we get a similiar relation
between the coadjoint orbits and the unitary dual G(cf.[K2]). For a general theory
of a Lie group, we refer to [He] and [V].

Let G be a simply connected Lie group with Lie algebra g. Then we have the

coadjoint mapping

Ad*(z):g"—g*, z€G.

Here Ad*(z) is the contragredient of the adjoint mapping Ad(z) = g — g. Therefore
(Ad*(2))(X) = [(Ad(z™)X), leg*, Xeg (1.1)

For the present time being, we fix a R-linear form ! € g* on g once and for all.

We let
Gi:={z€G|Ad*(z)l =1} (1.2)

the stabilizer of the coadjoint action Ad* of G on g* at . Since G; is a closed
subgroup of G, G is a Lie subgroup of G. We denote by g; the Lie subalgebra of g
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corresponding to G;. For all X € g, Y € g and t € R, we have

<Y,l>=<Y,Ad(exptX)l >
= < Ad(exp(—tX))Y,l >
=<e X (y), 1>
t2
=< X —tX, Y]+ E[X,[X,Y]H—--- >
Taking the derivative with respect to t at ¢t = 0 yields

<[X,Y],l>=0 forall XegandY €g. (1.3)

In order to interpret this identity geometrically, we first define the skew-symmetric
R-bilinear form B; € A%(g*) associated with [ on g by

Bi(X,Y):=<[X,Y),l> X, Ye€g (1.4)
Lemma 1.1. Let rad B; be the radical of By in g, 1.e.,
radB;:={X €g| Bi(X,Y)=0 forallY € g}.

Then
rad B; = a1 = {X cg I ad*(X)l = 0}
Here ad® denotes the differential of Ad* : G — GL(g*).

Proof. By (1.3), g1 C rad B;. Conversely, suppose X is an element of g such that
B(X,Y)=0for allY € g. Then

<Y,l>=<e 0w) 1> (%)
= < Ad(exp(—tX))Y,l >
= < Y, Ad*(exp(tX))l >
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holds for all Y € g. Therefore Ad*(exp(tX))l = I. Thus X € g;. It remains to
prove the identity (). Differentiating with respect to t at t =0,

d

ol < e~y 1>5= — < [X,Y],l >=0.

t=0

Thus < e~ *(tX)Y, I > is constant for ¢ and taking t = 0, we get the identity ().
For all X,Y € g, we have the identities

d

d* (X)) >= —

< Y,ad*(X)I > o

d

— < Ad(exp(—-tX))Y,l >
dt t=0

= - <ad(X)Y,! >
= — < [X,Y],l >= —B(X,Y).

<Y,Ad*(exptX)l >
t=0

Therefore
rad B = {X € g | ad*(X)I = 0}. O

Next we consider the smooth mapping ®; : G — g* defined by
®i(z) := Ad*(2)l, z€G. (1.5)

The mapping ®; is called the coadjoint orbit mapping defined by [ € g*. Clearly
the coadjoint orbit Ad*(G)! at [ can be identified with the homogeneous manifold
G/G,. Let 7 : G — G/G; be the canonical surjection. The bijective mapping

& :G/G — Ad*(G), ®(xG)):=Ad(z)l, z€G (1.6)
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allows to identify G/G with Ad*(G)! and to equip Ad*(G)! with the structure of

a C°-submanifold of g* in such a way that ®; is a diffeomorphism. Since

P (exptX) = Ad*(exp tX)!
ead‘(tX)l

2
= 1+ tad"(X)l + 5 ad*(ad" (X))l + -

holds for all X € g and t € R,

4 ®(exptX) = ad* (X)L
dt t=0

Thus the differential d®(e) : g — g* of ®; at e is given by
d®i(e)(X) =ad*(X)l, X €g. (1.7)

Consequently, we have, for all X,Y € g,

Bi(Y,X) =< [Y,X],l >
= — < (adX)Y,I>
= < Y,ad*(X)l >
=< Y,d®(e)(X) > .

We observe that if X € q, < Y,d®i(e)(X) >= 0 for all Y € g and hence
d®i(e)(X) = 0. Therefore the image d®;(e)(g) is identified with the tangent space
of the coadjoint orbit Ad*(G)! at the point I € g*. It is easy to show that the
tangent space of Ad*(G)! at { is isomorphic to the quotient vector space g/rad B,
(over R).

Let B; denote the non-degenerate alternating R-bilinear form on the quotient

vector space g/rad B; induced by B,.
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Lemma 1.2. The tangent space of the coadjoint orbit Ad*(G)! at ! is a symplectic

vector space with respect to By. In particular, it has an even dimension over R.
Proof. 1t follows immediately from the previous argument. [

Now we are ready to prove that the coadjoint orbit §2 := Ad*(G)! is a symplectic
manifold. We denote by X the vector field on g* corresponding to X € g. That
means that we have a canonical map g — Ty(f) sending X — X; := ad*(X)l. We

observe that p
Xi=ad"(X)l= —| Ad*(exptX)L
dt t=0

According to Lemma 1.1, g; is precisely the kernel of this map. We may define a
2-form Bq on ) by
Ba(X,Y) = Ba(ad*(X)l,ad*(Y)) := Bi(X,Y), (1.8)

where X,Y € g.

Theorem 1.3. Bg is non-degenerate and closed. So the coadjoint orbit 0 :=

Ad*(G)! at l is a symplectic manifold.

Proof. Let X be a vector field on g* corresponding to X € g such that
Bo(X,Y)=0 forall Y with X € g.

Since Ba(X,Y) =< [X,Y],l >=0 for all Y € g, according to Lemma 1.1, X € g.
Thus X = 0. Hence Bq is non-degenerate. If X;, X;, X3 are three vector fields on
(X1, X2,X3 € g), then
dBa(X1, X2, X;)
= XI(BQ(X2,X3)) - X2(BQ(X1,X3)) + X3(Ba(X1,X2))
- Ba([X1, X2], X3) + Ba([X1, Xs), X2) — Ba([X2, Xa], X1)
= — < [[X1,X2), X3] — [ X1, X3), X2] + [ X2, X3), X1),1 >=0
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Therefore By, is closed. Then (£, Bg) is a symplectic manifold. O

2. General Facts of Symplectic Geometry

On a symplectic manifold (M,w) there is an isomorphism between vector and
covector fields. Denoting the former space by Vect(M) and the latter by A'(M),
we have

Vect(M) 3 € & w(¢,") = ,w € AN (M). (2.1)

Let L denote the Lie derivative and let Vect(M,w) denote the set of Hamiltonian
vector fields, that is,

Vect(M,w) := {€ € Vect(M) | Lgw = 0}. (2.2)

Theorem 2.1. A vector field { is Hamiltonian if and only if the corresponding

covector field 1ew is closed.

Proof.
Lew=10dw+digow=0& digw =0. O

If 1¢w is not only closed but exact, then we say that £ is sirictly Hamiltonian,

and define its Hamiltonian f¢ by :
tew = —df. (2.3)

Conversely, if we start with a function f we obtain a Hamiltonian vector field &;
defined by : w({y, ) = —df.
The space C>®(M) is a Lie algebra with the Poisson bracket :

{f,9}= ‘-"(ffafg) = "df(ﬁg) = —{of =&59.
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Since

€150 = (65, &0]

f— & : C®°(M) — Vect(M) is a Lie algebra homomorphism. Suppose a Lie group
G acts on M and preserves w. There is a homomorphism g — Vect(M,w) : X —
€x. Suppose x is strictly Hamiltonian. If there is a Lie algebra homomorphism
g — C®(M): X — hx so that the following diagram is commutative, the action is

a Poisson action :

Vect(M,w)
o]
C>=(M).
Theorem 2.2. Suppose G and M are connected and G acts transitively on M and

preserves w. There exists :

(1) A covering M — M
(2) A central extension G — G
(3) A Poisson action of G on M

so that the diagram below is commutative.

GxM —— M

! !

GxM — M.

Here the horizontal arrows denote actions and vertical arrows the natural projec-

tions. [
This leads to a characterization of homogeneous symplectic manifolds.

Theorem 2.3. Fach G-homogeneous mainfold M is locally isomorphic to a coad-

joint orbit of G, or of a central extension G of G.
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In view of the preceding Lemma one need only to consider Poisson actions. For

these we introduce the momentum map p: M — g* which is defined by :
< u(m),X > = hx(m). (2.4)

Theorem 2.3 follows from

Theorem 2.4. If G is connected,
p:M—g*

is covariant, that is, u(gm) = Ad*(g)u(m).

Proof. Since G is connected it is enough to show infinitesimal covariance

—yu(m) = Ad*(Y)u(M)

all Y € g. Applying both sides to X € g we see that the desired equality becomes
—¢yhx = —hjy,x

which is a consequence of the definition of the Poisson bracket. O

Momentum maps are also interesting in the infinite-dimensional situation. Here
are some examples.
(1) M=G=R> M =M, G = H,.
(2) M = R*™\{0}, G = Sp(2n,R). g may be identified with the space of
symmetric matrices Sym(2n,R) which is isomorphic to g* in such a way
that < F, X >= tr(FX). In this case M = M, G = G, and pu(v) = vv', v

a column vector.
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(3) M=CP",G=U(n+1). (2 :21: --- : z,) are homogeneous coordinates
of 2z, then

ZiZ;

u(z) = (hij)v hij = ”3”2

(4) M =T*(N), G = Diff(N), g = Vect(N). Here p is defined by :
< N(A),E >=< A4, é(p(A)) >y

where p: M — N is the natural projection.

3. Polarization

Let g be a Lie algebra over a field K. Let g* be the dual space of g. We recall
that a Lie subalgebra § of g is said to be subordinate to [ € g* if ) forms a totally
isotropic vector space of g relative to the alternating K-bilinear form By : gxg — I
given by Bi(X,Y) :=< [X,Y],l > with X,Y € g associated with { on g, i.e.,

B[I(,xf, =< [b,b],l >=0.

Definition 3.1. A Lie subalgebra § of g subordinate to [ € g* is said to be a I\'-
polarization of g for I if § is maximal among the totally isotropic vector subspaces
of g relative to B;. In other words, if h is a vector subspace of g such that Hh C P
and Bj|pxp = 0, then we have h = P. In particular, each K-polarization h of g for

1 € g* is subordinate to ! and contains rad B; = g;. Thus we have the inclusions,
Z —rad By — b, (3.1)

where Z denotes the center of g.
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Remark 3.2. A maximal totally isotropic vector subspace of g relative to B; need
not to be a K-polarization of g for | € g*. If g is finite dimensional over K, a
Lie subalgebra b of g subordinate to | € g* of maximal dimension over K is not
necessarily a K-polarization of g for . Moreover, it is not true that there exist
K-polarizations of general Lie algebras g over K for all K-linear forms | € g*.
However, if g is a nilpotent real Lie algebra, then there exist real polarizations of g
for arbitrary R-linear forms | on g and the subalgebras l) of g subordinate to ! € g*

of maximal dimension over R are exactly the real polarizations of g for .

Let E be a finite dimensional vector space over a field K and B: E X E — K
an alternating K-bilinear form on E. For any subset F of E, we let the vector
subspace

Ft:={z€ E|B(z,y)=0forall y € F}

of E be the orthogonal subspace of E for F relative to B. In particular, EL = rad B.

Suppose that F is a vector subspace of E and define the K-linear mapping

friE— (F/FﬂradB) by
fr(z) := B(z,")lr, T€E. (3.2)
Then ker fr = F1. Consequently we have
dimg F — dimg(F Nrad B) + dimg F' = dimg E. (3.3)

The vector subspace F' of E is said to be isotropic or coisotropic relative to B if
F C F or F1 C F respectively. In the isotropic case we have

2dimg F < dimg E + dimg(F Nrad B) (3.4)
and in the coisotropic case

2dimg F 2 dimg E + dimg(F Nrad B). (3.5)
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Since E+ = rad B is an isotropic vector subspace of E, a mazimal vector subspace

F among the isotropic vector subspaces of E satisfies rad B C F' and hence
2dimg F £ dimg E + dimg rad B. (3.6)

Consequently the maximality property of F suggests that dimg F' actually attains
the upper bound.

Lemma 3.2. A vector subspace F' of the finite dimensional vector space E over a
field K is maximal among the isotropic vector subspaces of E relative to B if and
only if

2dimgk F = dimg F + dimg rad B.

Proof. It will suffice to show that the dimension of each vector subspace F of E
which is maximal among the isotropic subspaces of E relative to B attains the upper
bound

%(dimK FE + dimg rad B).

Let B denote the non-degenerate alternating K-bilinear form induced by B on the
quotient vector space E/rad B over K. Then (E/rad B, B) is a symplectic vector
space over K. In particular, dimg(E/rad B) is an even positive integer. Choose
a Lagrangian vector subspace L of E/rad B. Since L is isotropic and coisotropic,
it coincides with its orthogonal vector subspace of E/rad B for L relative to the

symplectic form B, i.e., L = L2. It follows that
Co 1.
dimg L = > dimg(E/rad B).

Denote by 7 : E — E/rad B be the canonical surjection and let F = 7~1(L) denote

the preimage of L relative to 7. Then F is an isotropic subspace of E relative to B
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such that rad B C F satisfying the following

dimg F = —;— dimg (E/rad B) + dimg(rad B)

= % dimg E — % dimg(rad B) + dimg(rad B)

1 1
=3 dimg E + 5 dimg(rad B).
Since for each isotropic vector subspace P of F relative to B containing rad B the

image w(P) is isotropic in E/rad B relative to B, the proof is complete. [J

If we apply the preceding lemma to the case when E is a finite dimensional
Lie algebra g over a field K and B € A%(E*) is the alternating K-bilinear form
B;: g x g — K defined by B(X,Y) :=< [X,Y],l >, then we get the following

characterization of the K-polarization of g for I

Proposition 3.3. Let [ € g* denote a K -linear form on the finite dimensional Lie
algebra over a flield K. For a Lie subalgebra lj of g subordinate to ! the following

conditions mutually equivalent :

(1) b forms a K-polarization of g for l.

(2) For any element X € g such that Bi(X,Y) = 0 holds for allY € b, we have
X el

(3) The orthogonal vector subspace bt of b relative to By is contained in b.

(4) dimg b = %(dimx g + dimg (rad B)).

Remark 3.4. For more details on symplectic manifolds, we refer to [A-B], [A-N]
and [Au]. For instance, [A-B] discusses Floer homology, the moduli of pseudoholo-
morphic curves and the compactness of the moduli space, [A-N] deals with Legendre
singularities and cobordisms, and [Au] deals with equivariant cohomology and toric

manifolds.
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