The Pure and Applied Mathematics 3 (1996), No 1, pp. 19-32 J. Korea Soc. of Math. Edu. (Series B)

A SURVEY ON SYMPLECTIC GEOMETRY

JEONG KOO NAM

1. Introduction

A symplectic manifold is a pair (M, ω) consisting of a smooth manifold M and a non-degenerate closed 2-form ω on M. Locally, $\omega = \sum_{i,j=1}^{n} \omega_{ij} dx^{i} \wedge dx^{j}$ and $d\omega = 0$, where $n = \dim M$. The condition $d\omega = 0$ implies that locally $\omega = d\alpha$ with $\alpha = \sum_{k=1}^{n} \alpha_{k} dx^{k}$. There are three main sources of symplectic manifolds.

(A) Phase space for classical mechanical systems

 $M=T^*(N)$ is the cotangent bundle of a smooth manifold N, i.e., the configuration space. T(N) is the position-velocity space and $T^*(N)$ is the impulse-coordinate space. If q^1, \dots, q^n are local coordinate in N, $\partial_1, \dots, \partial_n$ the corresponding tangent vector fields, p_1, \dots, p_n the corresponding coordinates in the fibres of $T^*(N)$ so that $\langle p, \partial_i \rangle = p_i$, then the 1-form $\alpha = \sum_{i=1}^n p_i dq^i$ is a canonically defined form which is invariant under Diff(N) and $\omega = d\alpha$ is closed (even exact) and non-degenerate.

(B) Complex projective algebraic varieties

These are subvarieties of complex projective varieties $P_n(\mathbb{C})$ defined by algebraic equations with a canonical Kähler form obtained by restricting the canonical Kähler

Typeset by AMS-TFX

form ω on $P_n(\mathbb{C})$. If $\omega = Re(w) + iIm(\omega)$, the real part $Re(\omega)$ of ω defines a Riemannian metric and the imaginary part $Im(\omega)$ defines a symplectic structure. These can be thought of as a *superization* of an even and an odd part. The even parts are Riemannian manifolds and the odd parts are symplectic manifolds.

(C) Coadjoint orbits of a Lie group

The study of coadjoint orbits of a Lie group is quite closely related to that of irreducible unitary representations of G. The relation between these was given by A. Kirillov [K1] in the case when G is a *nilpotent* Lie group. For a wide class of Lie groups including but not restricted to nilpotent groups, we get a similar relation between the coadjoint orbits and the unitary dual $\hat{G}(cf.[K2])$. For a general theory of a Lie group, we refer to [He] and [V].

Let G be a simply connected Lie group with Lie algebra \mathfrak{g} . Then we have the coadjoint mapping

$$Ad^*(x): \mathfrak{g}^* \to \mathfrak{g}^*, \quad x \in G.$$

Here $Ad^*(x)$ is the contragredient of the adjoint mapping $Ad(x) = \mathfrak{g} \to \mathfrak{g}$. Therefore

$$(\mathrm{Ad}^*(x)l)(X) = l(\mathrm{Ad}(x^{-1})X), \quad l \in \mathfrak{g}^*, \ X \in \mathfrak{g}. \tag{1.1}$$

For the present time being, we fix a \mathbb{R} -linear form $l \in \mathfrak{g}^*$ on \mathfrak{g} once and for all. We let

$$G_l := \{ x \in G \mid \mathrm{Ad}^*(x)l = l \}$$
 (1.2)

the stabilizer of the coadjoint action Ad^* of G on g^* at l. Since G_l is a closed subgroup of G, G_l is a Lie subgroup of G. We denote by g_l the Lie subalgebra of g

corresponding to G_l . For all $X \in \mathfrak{g}_l$, $Y \in \mathfrak{g}$ and $t \in \mathbb{R}$, we have

$$< Y, l > = < Y, Ad^*(\exp tX)l >$$
 $= < Ad(\exp(-tX))Y, l >$
 $= < e^{-t \operatorname{ad} X}(Y), l >$
 $= < X - t[X, Y] + \frac{t^2}{2}[X, [X, Y]] + \cdots, l > .$

Taking the derivative with respect to t at t = 0 yields

$$\langle [X,Y], l \rangle = 0$$
 for all $X \in \mathfrak{g}_l$ and $Y \in \mathfrak{g}$. (1.3)

In order to interpret this identity geometrically, we first define the skew-symmetric \mathbb{R} -bilinear form $B_l \in \Lambda^2(\mathfrak{g}^*)$ associated with l on \mathfrak{g} by

$$B_l(X,Y) := \langle [X,Y], l \rangle, \quad X,Y \in \mathfrak{g}.$$
 (1.4)

Lemma 1.1. Let rad B_l be the radical of B_l in \mathfrak{g} , i.e.,

$$\operatorname{rad} B_l := \{ X \in \mathfrak{g} \mid B_l(X, Y) = 0 \text{ for all } Y \in \mathfrak{g} \}.$$

Then

$$\operatorname{rad} B_l = \mathfrak{g}_l = \{ X \in \mathfrak{g} \mid \operatorname{ad}^*(X)l = 0 \}.$$

Here ad^* denotes the differential of $\operatorname{Ad}^*: G \to \operatorname{GL}(\mathfrak{g}^*)$.

Proof. By (1.3), $\mathfrak{g}_l \subseteq \operatorname{rad} B_l$. Conversely, suppose X is an element of \mathfrak{g} such that $B_l(X,Y)=0$ for all $Y\in\mathfrak{g}$. Then

$$< Y, l > = < e^{-\operatorname{ad}(tX)}(Y), l >$$
 (*)
 $= < \operatorname{Ad}(\exp(-tX))Y, l >$
 $= < Y, \operatorname{Ad}^*(\exp(tX))l >$

holds for all $Y \in \mathfrak{g}$. Therefore $\mathrm{Ad}^*(\exp(tX))l = l$. Thus $X \in \mathfrak{g}_l$. It remains to prove the identity (*). Differentiating with respect to t at t = 0,

$$\frac{d}{dt}\Big|_{t=0} < e^{-\operatorname{ad}(tX)}Y, l> = - < [X,Y], l> = 0.$$

Thus $\langle e^{-\operatorname{ad}(tX)}Y, l \rangle$ is constant for t and taking t = 0, we get the identity (*). For all $X, Y \in \mathfrak{g}$, we have the identities

$$\langle Y, \operatorname{ad}^*(X)l \rangle = \frac{d}{dt} \Big|_{t=0} \langle Y, \operatorname{Ad}^*(\exp tX)l \rangle$$

$$= \frac{d}{dt} \Big|_{t=0} \langle \operatorname{Ad}(\exp(-tX))Y, l \rangle$$

$$= -\langle \operatorname{ad}(X)Y, l \rangle$$

$$= -\langle [X, Y], l \rangle = -B_l(X, Y).$$

Therefore

$$\operatorname{rad} B_{l} = \{ X \in \mathfrak{g} \mid \operatorname{ad}^{*}(X)l = 0 \}.$$

Next we consider the smooth mapping $\Phi_l: G \to \mathfrak{g}^*$ defined by

$$\Phi_l(x) := \operatorname{Ad}^*(x)l, \quad x \in G. \tag{1.5}$$

The mapping Φ_l is called the coadjoint orbit mapping defined by $l \in \mathfrak{g}^*$. Clearly the coadjoint orbit $\mathrm{Ad}^*(G)l$ at l can be identified with the homogeneous manifold G/G_l . Let $\pi: G \to G/G_l$ be the canonical surjection. The bijective mapping

$$\dot{\Phi}_l: G/G_l \to \mathrm{Ad}^*(G)l, \quad \dot{\Phi}_l(xG_l) := \mathrm{Ad}^*(x)l, \quad x \in G$$
 (1.6)

allows to identify G/G_l with $\mathrm{Ad}^*(G)l$ and to equip $\mathrm{Ad}^*(G)l$ with the structure of a C^{∞} -submanifold of \mathfrak{g}^* in such a way that $\dot{\Phi}_l$ is a diffeomorphism. Since

$$\begin{split} \Phi_l(\exp tX) &= \operatorname{Ad}^*(\exp tX)l \\ &= e^{\operatorname{ad}^*(tX)}l \\ &= l + t\operatorname{ad}^*(X)l + \frac{t^2}{2}\operatorname{ad}^*(\operatorname{ad}^*(X))l + \cdots \end{split}$$

holds for all $X \in \mathfrak{g}$ and $t \in \mathbb{R}$,

$$\frac{d}{dt}\bigg|_{t=0} \Phi_l(\exp tX) = \operatorname{ad}^*(X)l.$$

Thus the differential $d\Phi_l(e): \mathfrak{g} \to \mathfrak{g}^*$ of Φ_l at e is given by

$$d\Phi_l(e)(X) = \operatorname{ad}^*(X)l, \quad X \in \mathfrak{g}. \tag{1.7}$$

Consequently, we have, for all $X, Y \in \mathfrak{g}$,

$$B_l(Y, X) = <[Y, X], l >$$

$$= - < (ad X)Y, l >$$

$$= < Y, ad^*(X)l >$$

$$= < Y, d\Phi_l(e)(X) > .$$

We observe that if $X \in \mathfrak{g}_l$, $\langle Y, d\Phi_l(e)(X) \rangle = 0$ for all $Y \in \mathfrak{g}$ and hence $d\Phi_l(e)(X) = 0$. Therefore the image $d\Phi_l(e)(\mathfrak{g})$ is identified with the tangent space of the coadjoint orbit $\mathrm{Ad}^*(G)l$ at the point $l \in \mathfrak{g}^*$. It is easy to show that the tangent space of $\mathrm{Ad}^*(G)l$ at l is isomorphic to the quotient vector space $\mathfrak{g}/\mathrm{rad}\,B_l$ (over \mathbb{R}).

Let B_l denote the non-degenerate alternating \mathbb{R} -bilinear form on the quotient vector space $\mathfrak{g}/\operatorname{rad} B_l$ induced by B_l .

Lemma 1.2. The tangent space of the coadjoint orbit $Ad^*(G)l$ at l is a symplectic vector space with respect to \dot{B}_l . In particular, it has an even dimension over \mathbb{R} .

Proof. It follows immediately from the previous argument. \square

Now we are ready to prove that the coadjoint orbit $\Omega := \operatorname{Ad}^*(G)l$ is a symplectic manifold. We denote by \tilde{X} the vector field on \mathfrak{g}^* corresponding to $X \in \mathfrak{g}$. That means that we have a canonical map $\mathfrak{g} \to T_l(\Omega)$ sending $X \to \tilde{X}_l := \operatorname{ad}^*(X)l$. We observe that

$$\tilde{X}_l = \operatorname{ad}^*(X)l = \frac{d}{dt}\Big|_{t=0} \operatorname{Ad}^*(\exp tX)l.$$

According to Lemma 1.1, \mathfrak{g}_l is precisely the kernel of this map. We may define a 2-form B_{Ω} on Ω by

$$B_{\Omega}(\tilde{X}, \tilde{Y}) = B_{\Omega}(\operatorname{ad}^{*}(X)l, \operatorname{ad}^{*}(Y)l) := B_{l}(X, Y), \tag{1.8}$$

where $X, Y \in \mathfrak{g}$.

Theorem 1.3. B_{Ω} is non-degenerate and closed. So the coadjoint orbit $\Omega := \operatorname{Ad}^*(G)l$ at l is a symplectic manifold.

Proof. Let \tilde{X} be a vector field on \mathfrak{g}^* corresponding to $X \in \mathfrak{g}$ such that

$$B_{\Omega}(\tilde{X}, \tilde{Y}) = 0$$
 for all \tilde{Y} with $X \in \mathfrak{g}$.

Since $B_{\Omega}(\tilde{X}, \tilde{Y}) = \langle [X, Y], l \rangle = 0$ for all $Y \in \mathfrak{g}$, according to Lemma 1.1, $X \in \mathfrak{g}_l$. Thus $\tilde{X} = 0$. Hence B_{Ω} is non-degenerate. If $\tilde{X}_1, \tilde{X}_2, \tilde{X}_3$ are three vector fields on $\Omega(X_1, X_2, X_3 \in \mathfrak{g})$, then

$$\begin{split} dB_{\Omega}(\tilde{X}_{1}, \tilde{X}_{2}, \tilde{X}_{3}) \\ &= \tilde{X}_{1}(B_{\Omega}(\tilde{X}_{2}, \tilde{X}_{3})) - \tilde{X}_{2}(B_{\Omega}(\tilde{X}_{1}, \tilde{X}_{3})) + \tilde{X}_{3}(B_{\Omega}(\tilde{X}_{1}, \tilde{X}_{2})) \\ &- B_{\Omega}([\tilde{X}_{1}, \tilde{X}_{2}], \tilde{X}_{3}) + B_{\Omega}([\tilde{X}_{1}, \tilde{X}_{3}], \tilde{X}_{2}) - B_{\Omega}([\tilde{X}_{2}, \tilde{X}_{3}], \tilde{X}_{1}) \\ &= - \langle [[X_{1}, X_{2}], X_{3}] - [[X_{1}, X_{3}], X_{2}] + [[X_{2}, X_{3}], X_{1}], l \rangle = 0 \end{split}$$

Therefore B_{Ω} is closed. Then (Ω, B_{Ω}) is a symplectic manifold. \square

2. General Facts of Symplectic Geometry

On a symplectic manifold (M, ω) there is an isomorphism between vector and covector fields. Denoting the former space by Vect(M) and the latter by $A^1(M)$, we have

$$Vect(M) \ni \xi \leftrightarrow \omega(\xi, \cdot) = i_{\xi}\omega \in A^{1}(M). \tag{2.1}$$

Let L denote the Lie derivative and let $Vect(M, \omega)$ denote the set of Hamiltonian vector fields, that is,

$$Vect(M, \omega) := \{ \xi \in Vect(M) \mid L_{\xi}\omega = 0 \}. \tag{2.2}$$

Theorem 2.1. A vector field ξ is Hamiltonian if and only if the corresponding covector field $\iota_{\xi}\omega$ is closed.

Proof.

$$L_{\xi}\omega = i_{\xi} \circ d\omega + di_{\xi} \circ \omega = 0 \Leftrightarrow di_{\xi}\omega = 0.$$

If $i_{\xi}\omega$ is not only closed but exact, then we say that ξ is *strictly Hamiltonian*, and define its *Hamiltonian* f_{ξ} by:

$$i_{\xi}\omega = -df_{\xi}. \tag{2.3}$$

Conversely, if we start with a function f we obtain a Hamiltonian vector field ξ_f defined by : $\omega(\xi_f, \cdot) = -df$.

The space $C^{\infty}(M)$ is a Lie algebra with the *Poisson* bracket:

$$\{f,g\} = \omega(\xi_f,\xi_g) = -df(\xi_g) = -\xi_g f = \xi_f g.$$

Since

$$\xi_{\{f,g\}} = [\xi_f, \xi_g]$$

 $f \to \xi_f : C^\infty(M) \to \operatorname{Vect}(M)$ is a Lie algebra homomorphism. Suppose a Lie group G acts on M and preserves ω . There is a homomorphism $\mathfrak{g} \to \operatorname{Vect}(M,\omega) : X \to \xi_X$. Suppose ξ_X is strictly Hamiltonian. If there is a Lie algebra homomorphism $\mathfrak{g} \to C^\infty(M) : X \to h_X$ so that the following diagram is commutative, the action is a Poisson action:

$$\operatorname{Vect}(M,\omega)$$
 $\mathcal{C}^{\infty}(M).$

Theorem 2.2. Suppose G and M are connected and G acts transitively on M and preserves ω . There exists:

- (1) A covering $\tilde{M} \to M$
- (2) A central extension $\tilde{G} \to G$
- (3) A Poisson action of \tilde{G} on \tilde{M}

so that the diagram below is commutative.

$$\begin{array}{cccc} \tilde{G} \times \tilde{M} & \longrightarrow & \tilde{M} \\ \downarrow & & \downarrow \\ G \times M & \longrightarrow & M. \end{array}$$

Here the horizontal arrows denote actions and vertical arrows the natural projections. \square

This leads to a characterization of homogeneous symplectic manifolds.

Theorem 2.3. Each G-homogeneous mainfold M is locally isomorphic to a coadjoint orbit of G, or of a central extension \tilde{G} of G.

In view of the preceding Lemma one need only to consider Poisson actions. For these we introduce the momentum map $\mu: M \to \mathfrak{g}^*$ which is defined by:

$$<\mu(m), X> = h_X(m). \tag{2.4}$$

Theorem 2.3 follows from

Theorem 2.4. If G is connected,

$$\mu:M\to\mathfrak{g}^*$$

is covariant, that is, $\mu(gm) = \mathrm{Ad}^*(g)\mu(m)$.

Proof. Since G is connected it is enough to show infinitesimal covariance

$$-\xi_Y \mu(m) = \operatorname{Ad}^*(Y) \mu(M)$$

all $Y \in \mathfrak{g}$. Applying both sides to $X \in \mathfrak{g}$ we see that the desired equality becomes

$$-\xi_Y h_X = -h_{[Y,X]}$$

which is a consequence of the definition of the Poisson bracket.

Momentum maps are also interesting in the infinite-dimensional situation. Here are some examples.

- (1) $M = G = \mathbb{R}^{2n}, \, \tilde{M} = M, \, \tilde{G} = H_n.$
- (2) $M = \mathbb{R}^{2n} \setminus \{0\}$, $G = Sp(2n, \mathbb{R})$. \mathfrak{g} may be identified with the space of symmetric matrices $Sym(2n, \mathbb{R})$ which is isomorphic to \mathfrak{g}^* in such a way that $\langle F, X \rangle = tr(FX)$. In this case $\tilde{M} = M$, $\tilde{G} = G$, and $\mu(v) = vv^t$, v a column vector.

(3) $M = \mathbb{CP}^n$, G = U(n+1). If $(z_0 : z_1 : \cdots : z_n)$ are homogeneous coordinates of z, then

$$\mu(z) = (h_{ij}), \quad h_{ij} = \frac{z_i \overline{z}_j}{\|z\|^2}.$$

(4) $M = T^*(N)$, G = Diff(N), g = Vect(N). Here μ is defined by :

$$<\mu(A),\xi>=< A,\xi(p(A))>,$$

where $p: M \to N$ is the natural projection.

3. Polarization

Let \mathfrak{g} be a Lie algebra over a field K. Let \mathfrak{g}^* be the dual space of \mathfrak{g} . We recall that a Lie subalgebra \mathfrak{h} of \mathfrak{g} is said to be *subordinate* to $l \in \mathfrak{g}^*$ if \mathfrak{h} forms a totally isotropic vector space of \mathfrak{g} relative to the alternating K-bilinear form $B_l: \mathfrak{g} \times \mathfrak{g} \to K$ given by $B_l(X,Y) := \langle [X,Y], l \rangle$ with $X,Y \in \mathfrak{g}$ associated with l on \mathfrak{g} , i.e.,

$$B_l|_{\mathfrak{h}\times\mathfrak{h}}=<[\mathfrak{h},\mathfrak{h}],l>=0.$$

Definition 3.1. A Lie subalgebra \mathfrak{h} of \mathfrak{g} subordinate to $l \in \mathfrak{g}^*$ is said to be a K-polarization of \mathfrak{g} for l if \mathfrak{h} is maximal among the totally isotropic vector subspaces of \mathfrak{g} relative to B_l . In other words, if \mathfrak{h} is a vector subspace of \mathfrak{g} such that $\mathfrak{h} \subseteq P$ and $B_l|_{P\times P}=0$, then we have $\mathfrak{h}=P$. In particular, each K-polarization \mathfrak{h} of \mathfrak{g} for $l\in \mathfrak{g}^*$ is subordinate to l and contains rad $B_l=\mathfrak{g}_l$. Thus we have the inclusions,

$$\mathcal{Z} \hookrightarrow \operatorname{rad} B_{l} \hookrightarrow \mathfrak{h}, \tag{3.1}$$

where \mathcal{Z} denotes the center of \mathfrak{g} .

Remark 3.2. A maximal totally isotropic vector subspace of $\mathfrak g$ relative to B_l need not to be a K-polarization of $\mathfrak g$ for $l \in \mathfrak g^*$. If $\mathfrak g$ is finite dimensional over K, a Lie subalgebra $\mathfrak h$ of $\mathfrak g$ subordinate to $l \in \mathfrak g^*$ of maximal dimension over K is not necessarily a K-polarization of $\mathfrak g$ for l. Moreover, it is not true that there exist K-polarizations of general Lie algebras $\mathfrak g$ over K for all K-linear forms $l \in \mathfrak g^*$. However, if $\mathfrak g$ is a nilpotent real Lie algebra, then there exist real polarizations of $\mathfrak g$ for arbitrary $\mathbb R$ -linear forms l on $\mathfrak g$ and the subalgebras $\mathfrak h$ of $\mathfrak g$ subordinate to $l \in \mathfrak g^*$ of maximal dimension over $\mathbb R$ are exactly the real polarizations of $\mathfrak g$ for l.

Let E be a finite dimensional vector space over a field K and $B: E \times E \to K$ an alternating K-bilinear form on E. For any subset F of E, we let the vector subspace

$$F^{\perp} := \{ x \in E \mid B(x, y) = 0 \text{ for all } y \in F \}$$

of E be the *orthogonal* subspace of E for F relative to B. In particular, $E^{\perp} = \operatorname{rad} B$. Suppose that F is a vector subspace of E and define the K-linear mapping $f_F: E \to \left(F \middle/ F \cap \operatorname{rad} B\right)^*$ by

$$f_F(x) := B(x, \cdot)|_F, \quad x \in E. \tag{3.2}$$

Then ker $f_F = F^{\perp}$. Consequently we have

$$\dim_K F - \dim_K (F \cap \operatorname{rad} B) + \dim_K F^{\perp} = \dim_K E. \tag{3.3}$$

The vector subspace F of E is said to be *isotropic* or *coisotropic* relative to B if $F \subseteq F^{\perp}$ or $F^{\perp} \subseteq F$ respectively. In the *isotropic case* we have

$$2\dim_K F \le \dim_K E + \dim_K (F \cap \operatorname{rad} B) \tag{3.4}$$

and in the coisotropic case

$$2\dim_K F \ge \dim_K E + \dim_K (F \cap \operatorname{rad} B). \tag{3.5}$$

Since $E^{\perp} = \operatorname{rad} B$ is an isotropic vector subspace of E, a maximal vector subspace F among the isotropic vector subspaces of E satisfies $\operatorname{rad} B \subseteq F$ and hence

$$2\dim_K F \le \dim_K E + \dim_K \operatorname{rad} B. \tag{3.6}$$

Consequently the maximality property of F suggests that $\dim_K F$ actually attains the upper bound.

Lemma 3.2. A vector subspace F of the finite dimensional vector space E over a field K is maximal among the isotropic vector subspaces of E relative to B if and only if

$$2\dim_K F = \dim_K E + \dim_K \operatorname{rad} B$$
.

Proof. It will suffice to show that the dimension of each vector subspace F of E which is maximal among the isotropic subspaces of E relative to B attains the upper bound

$$\frac{1}{2}(\dim_K E + \dim_K \operatorname{rad} B).$$

Let \dot{B} denote the non-degenerate alternating K-bilinear form induced by B on the quotient vector space $E/\operatorname{rad} B$ over K. Then $(E/\operatorname{rad} B, \dot{B})$ is a symplectic vector space over K. In particular, $\dim_K(E/\operatorname{rad} B)$ is an even positive integer. Choose a Lagrangian vector subspace L of $E/\operatorname{rad} B$. Since L is isotropic and coisotropic, it coincides with its orthogonal vector subspace of $E/\operatorname{rad} B$ for L relative to the symplectic form \dot{B} , i.e., $L=L^2$. It follows that

$$\dim_K L = \frac{1}{2}\dim_K (E/\operatorname{rad} B).$$

Denote by $\pi: E \to E/\operatorname{rad} B$ be the canonical surjection and let $F = \pi^{-1}(L)$ denote the preimage of L relative to π . Then F is an isotropic subspace of E relative to E

such that rad $B \subseteq F$ satisfying the following

$$\dim_K F = \frac{1}{2} \dim_K (E/\operatorname{rad} B) + \dim_K (\operatorname{rad} B)$$

$$= \frac{1}{2} \dim_K E - \frac{1}{2} \dim_K (\operatorname{rad} B) + \dim_K (\operatorname{rad} B)$$

$$= \frac{1}{2} \dim_K E + \frac{1}{2} \dim_K (\operatorname{rad} B).$$

Since for each isotropic vector subspace P of E relative to B containing rad B the image $\pi(P)$ is isotropic in $E/\operatorname{rad} B$ relative to B, the proof is complete.

If we apply the preceding lemma to the case when E is a finite dimensional Lie algebra g over a field K and $B \in \Lambda^2(E^*)$ is the alternating K-bilinear form $B_l: \mathfrak{g} \times \mathfrak{g} \to K$ defined by $B(X,Y) := \langle [X,Y], l \rangle$, then we get the following characterization of the K-polarization of $\mathfrak g$ for l.

Proposition 3.3. Let $l \in \mathfrak{g}^*$ denote a K-linear form on the finite dimensional Lie algebra over a field K. For a Lie subalgebra h of g subordinate to l the following conditions mutually equivalent:

- (1) \mathfrak{h} forms a K-polarization of \mathfrak{g} for l.
- (2) For any element $X \in \mathfrak{g}$ such that $B_l(X,Y) = 0$ holds for all $Y \in \mathfrak{h}$, we have $X \in \mathfrak{h}$.
- (3) The orthogonal vector subspace h[⊥] of h relative to B_l is contained in h.
 (4) dim_K h = ½(dim_K g + dim_K(rad B)).

Remark 3.4. For more details on symplectic manifolds, we refer to [A-B], [A-N] and [Au]. For instance, [A-B] discusses Floer homology, the moduli of pseudoholomorphic curves and the compactness of the moduli space, [A-N] deals with Legendre singularities and cobordisms, and [Au] deals with equivariant cohomology and toric manifolds.

REFERENCES

- [A-B] B. Aebissheer, M. Borer, M. Kalin, Ch. Leuenbeger and H.M. Reimann, Symplectic Geometry, vol 124, Progress in Math., Birkhauser, 1994.
- [A-N] Arnol'd and Novikov(Eds), EMS 4 (Dynamical Systems 4), Springer-Verlag, New York/Berlin.
- [Au] Michele Audin, The Topology of Torus Actions on Symplectic manifolds, vol. 93, Progress in Math., Birkhauser, 1991.
- [He] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, Inc., 1978.
- [K1] A.A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53-104.
- [K2] ____, Elements of the Theory of Representations, Springer-Verlag, New York/Berlin, 1976.
- [V] V.S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, Inc., 1974.

DEPARTMENT OF MATHEMATICS, INHA UNIVERSITY, INCHEON 402-751, KOREA