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ON THE SOLUTIONS OF THREE ORDER DIFFERENTIAL
EQUATION WITH NON-NEGATIVE COEFFICIENTS

IN Goo CHo

1. Introduction

We consider the third order linear homogeneous differential equation

Ls(y) = y" + P(z)y' + Q(z)y = 0 (E)

P(z) > 0, Q(z) > 0 and P(z)/Q(z) is nondecreasing on [a, oo) for some real
number a. (1)

In this paper we discuss the distribution of zeros of solutions and a condition of
oscillatory for equation (E).

(E) is said to be disconjugate on [a, o0) if no nontrivial solution of (E) has more
than two zeros on [a, c0).

A nontrivial solution of (E) is said to be oscillatory on [a, o), if it has an infinite
number of zeros on [a, c0). The nontrivial solution of (E) is non-oscillatory if it is
not oscillatory.

If (E) has an oscillatory solution, it is said to be oscillatory. And if all solutions
of (E) are non-oscillatory then (E) is said to be non-oscillatory.

We give some basic definitions.
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2. Preliminaries

Definition 2.1. Lj(z) = (2" + P(z)z) — Q(z)z = 0 is adjoint of (E). (E*)
Definition 2.2. ¢ € [a, o) and Uj(z,¢),: = 1,2 be pair of solutions determined
by the initial conditions at = = c.

(a) Ui(z,c); y(c) =0, y'(c) =1, y"(c) = 0 ; first principal solution.

(b) Ua(z,c); y(c) =0, y'(c) =0, y"(c) =1 ; second principal solution.

Definition 2.3. Let D;(y) = y"' + P(z)y, be second order differential operator and

¢ € [a, o0).

(a) Uf(z,c); Z(c) =0, Z'(c) =1, D,Z(c) = 0; first principal solution of (E*)

at z =c. ,
(b) Us(z,c); Z(c) =0, Z'(c) =0, D2Z(c) = 1 ; second principal solution of
(E*) at z =c.

The wronskian of any two solutions of (E) is a solution of (E*) and converse
holds. Thus,

U (z,¢) = W(Uy,Up) = UyUS — U, UL
Ua(z,c) = W(UT,U3) = Uy Uy = U5 U

Differentiating these identities yields followings.

Uz, ¢) = UY — DU
D,U;(z,c) = U Uy - U UY (2)
Us(x,c) = Uy DUy — Uy DLUY
Ul(z,c) = UM DU} — U DU
DyUs(z,¢) = Uy'U3" — U3'U;"
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3. Main Theorem

Lemma 3.1. Let (E) be disconjugate on [a, 00) and let its coefficients satisfy (1).
If Uy (z,a) has a zero on (a, oo) with z =t, being the first zero of U;'(z,a) then

(a) Uy (z,a) has a second zero t3 € (t;, 00).
(b) Uj(z,a) has exactly one zero s; € (t1,t2) and Uz(z,a) < 0 on (s;, o0).

Proof. Assume U} (z,a) has a zero at ¢ =t,.

Suppose Uj(z,a) > 0 on (a, o0). Then Uy"'(x,a) < 0 which implies Uj(z,a) is
decreasing on (a, oo0). Therefore, Uj'(z,a) < 0 on (t;, o). Let the first such zero
of Ui(z,a) be s, and assume Uj(z,a) has a second zero s;. Then Uj(z,a) < 0 on
(s1, S2)-

From the identity U;(z,a) = W(U,,U,), we find U'(s2,a) < 0. Let

Ui(z,a)

M) = i a)

We find A\;(z) — o0 as = — s2 on (s1, $2).

Us(z,a)Uy'(z, a) — Uy (2,a)Ui (2, a)
(Uy(=,a))?
_ _Deli(@a) )
(Uy(z,0))* C

And  X,(z) =

since DoU3(z,a) = 1+ [ Q(t)Us(t,a)dt > 0, A(z) < 0 on (s1, s2) and this
contradicts A\j(z) — oo. Therefore, Uj(z,a) has exactly one zero s; € (¢1, o0).
If Uy(z,a) does not have a zero on (t;00), then Uj'(z,a) < 0 and Uy(z,a) < 0
on same interval and we conclude that U(z,a) has a zero, contradicting the fact
Uz(z,a) > 0 on (a, o). thus Uy (z,a) has a second zero t2 € (t;, oo) and the
Lemma, follows.
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Lemma 3.2. Let (E) be disconjugate on [a, co) and let its coefficients satisfy (1).
Then P(z)D,Uj(z,a) + Q(X)U3(z,a) > 0 on (a, o).

Proof. Since Uj(z,a) is a solution of (E*), we have [U}"(z,a) + P(z)U}(z,a)]
Q(z)U;(z,a).

Integrating from a to z,

U3"(s,a) + P()U3 (2,a) = 1 + / Q(t)U2(t, a)dt. Therefore

Us'(z,a) = (z — a) + / ’ / Q()U3 (s, a)dsdt — / " P, a)dt

a

=(z—a)+ / (@ = )02 (¢, a)dt — / " P)US(t, a)dt.

a

P(2)D,U3 (. a) + Q(2)U3'(z, 0) = P(z) + P(z) / * QUL (t, a)dt
+Q)e -0+ Q) [ (e - 0OV (0t - Qo) [ POVt it
= P(a) + Q@)= = 0) + Q@) [ (= - QI3 (1,
+ [[1P@Q0) - QP 0y
Since P(z)/Q(z) is nondecreasing and U} (z, a) > 0, it follows that P(z)D2Uj (x, @)

+Q(z)Uz'(z,a) > 0 on (a, o).

Theorem 3.1. Let (E) be disconjugate on [a, o0) and let its coefficients satisty
(1). Assume Uj'(z,a) has a zero at t;. Then U} (z,a) has a second zero at t2, and

Uy(z,a) > 0 on (13, o), a < t; < t3.

Proof. Suppose Uj'(x,a) has a zero on (t2, 00). Let t3 be the first zero of U} (z, a)
on this interval. Then the identity D,U;(z,a) implies that U{'(¢3,a) > 0.
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Let Az(z) = 51”8’3. Then Ay(z) — oo as t — t3 on (t;,13).
2 \Z,

' U)'(z,)U; (z,a) — U, (2,a)U;'(z, a)

2(z) = .

(U3(2,a))?

Since Uy(z,a), Ua(z,a) are solution of (E) and from the identity of (2), we have

P(2)D;U3(,a) + Q(z)U3'(z, a)
(U7 (z,a)) '

By Lemma 3.2, the numerator is positive. Thus A5(z) < 0 on (%2,t3). This is a

{(2) = -

contradiction and Lemma 3.3 follows.

In next, we give a criterion for the oscillation of (E)
Lemma 3.3 {4]. If2Q(z)— P'(z) < 0 and not identically zero in any interval then
(E) has a solution U(z) for which
F[U(2)] = U'(2)* — 2U()U"(z) — P(2)U*(z)
~ FU@+ [ (20) - Pe)UH
a

is always negative. Consequently U(z) is nonoscillatory.

Definition 3.1. If (E) has a non-trivial solution with three zeros on [t, ), t €
[a, 00), then the first conjugate point 11(¢) of z = t is defined by n1(¢) = inf{z3; t <
1 S22 < z3, y(zz) = 0, 1= 172a3a Y 3& 0, L3(y) = 0}

Lemma 3.4 [2]. If (E) is non-oscillatory then either

(i) for eacht € [a, o0), (E) has n:1(t) < oo or
(i1) (E™) is oscillatory.
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Theorem 3.2. Let the coefficients of (E) satisfy P(z) > 0, Q(z) > 0 and P(z) +
Q(z) # 0 on [a, o). If 1(t) < oo for each t € [a, o0) and 2Q(z) — P'(z) < 0, then
(E) is oscillatory.

Proof. Assume (E) is non-oscillatory. By Lemma 3.4, (E*) is oscillatory. since
P'(z) - Q(z) 2 P'(z) — 2Q(z) 2 0 and 2(P'(2) — Q(2)) — P'(z) = P'(z) — 2Q(<)
> 0, a result of Lemma 3.3 implies (£*) has a non-oscillatory solution. this is a

contradiction and (E) is oscillatory.
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