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NOTES ON A SYMMETRIC BILINEAR FORM
ASSOCIATED WITH REGULAR DIRICHLET FORM

K1 SEoNG CHOI, GYE TAK YANG

ABSTRACT. We will show how bilinear form &, related with some smooth measures
can be extended to the L?>(R™, C) setting.

1. Introduction

We consider a regular Dirichlet form (£,F) on L?(X,m) where X is locally
compact separable metric space and m is a positive Radon measure on X with
Supp[m] = X. S is the family of all smooth measures on X. Let M = (Q, X, ¢, Py)
be a Hunt process on X which is m-symmetric and associated with (£, F). For a
given smooth measure p, we denote by A, the unique positive continuous additive
functional such that u is the Revuz measure of A,. Let u = py — p_ be a signed
Borel measure on X. If u; and p_ are smooth measures, then we write p €
S — S. For a Borel measure v on X, L?(X,v) is sometimes written L?(v) when the
underlying context is clear.

For u€ S — S, we put

Eu(fr9) = E(frg) + /X f(2)9(2) (dz)

for all f,g € F N L%(Ju| + m). We consider the case where X is the Euclidean

space R™ and m is a Lebesgue measure on R". It is essential to quantum mechanics
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that functions are from the space L?(R™ C) of square-integrable (with respect to

Lebesgue measure), complex-valued functions.

In this paper we extend &, to L?*(R"™,C) setting and find self-adjoint operator’
which represent the extension of £,.

2. Extension of £, to L}(R"™,C)

Let us use the short notation L(u) for L2(X, u), for u € S — S, we put

£u(w,0) = £u,0) + [ ullo(e)u(do)
for all u,v € F N L*(|u| + m)

Theorem 1. If £, is bounded below, densely defined and closed, then there exist
a unique, densely defined self-adjoint operator H* which is bounded below and
satisfies (H*u,v) = E,(u,v) for allu € D(H") and v € D(E,,)

Proof. See[ 4 | Theorem 2.6

Fora>0,pandvin S— 8 ,f C B(X), we set

U+ Sa) = Bl | T et (X, )dAY]
0

provided the right hand side makes sense. When v = m, we simply write U™/ f
for Uotsf,

In the following Theorem 2, we consider the case where X is the Euclidean space
R"™ and m is a Lebesgue measure on R". If ¥ is a function in L?(R"™,C) (space of
square integrable, complex valued functions), we denote by #; its real part and by

¥, its imaginary part; i.e., ¥ = Y1 + 1)
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Theorem 2. Let u € S — S be such that

U (L*(m)) C L*(m)

for some o > 0. Suppose that &, is closed. If we define Sf by

EC (W, 0) = Eu(1,01) + Eu(2,02) + i[Eu(¥2, 1) — Eu(h1, 2))]

for all ¥, € D(E,) +1D(E,) C L*(R",C) ,then £ is densely defined, bounded
below and closed.

Proof. Since D(E,) is dense in L*(R®), D(€,)+iD(E,) is dense in L?(R", C). Since
U*tk#(L*(m)) C L%(m), &, is bounded below [1. Theorem4.1].

Let A be some real number satisfying £,(u,u) > Allu||? for all u € D(€,) and

let ) = 1 +itp2 € D(E,) +iD(E,). Then we have EC (¢, %) > A[l|lv1]|2 + [|¢2(|?] =
All9||?> By the symmetry of &,,
To verify Sf is closed, it suffices to show that D(EE ) is complete under the norm

ol = &7 (%, %) + (=4 + )[|¢]?

Let (1,,) be a sequence in D(Sf) such that |||$n — ¥mlll = 0 asn,m — oco. Then
Yn = n,1 + it 2 for each n € N, where 95, 1,952 are in D(E,). By the symmetry
of £,

“W’n - "/’m”lz = gf(¢n = Ym,Yn — ¢m) + (—A + l)llwn - "/’m“2
= u("/’n,l - ¢m,la¢n,l - ¢m,1) + gu(¢n,2 - '(/)m,2, ¢n,2 - ¢m,2)

F(=A+ Dl$n1 = Ymall® + (=4 + 1)|[¢n,2 — Yoz ll?
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= 5y(¢n,] - ¢m,l ;"/)n,] - d)m,]) + (—A + 1)”‘)/)11,1 - wm,l ”2
+Eu(bn2 = Ym2:%n,2 — Ym2) + (—A+ D|[Yn 2 — Ym 2|

= ”Wn,l - Qf’m,ll”z + ”lwn,Z - ¢m,2l”2~

Since [|[pn —Ymll| = 0, [[[¥n,1 —¥m,1ll| = 0 and [[[thn,2 — ¥m2[|| = 0. Since £, is
closed, there exist 11, ¥z in D(£,,) such that ||| 1 —t1]|| — 0 and |||¢pn 2~ %2 ||| — 0
as n — 00.

This means that ||| — 9||| — 0 as n — co. And since ¢ = o1 + ity € D(EC

we conclude that Sf is closed.

Let H" be a self-adjoint operator as in Theorem 1. If we define HS, on D(H*) +
iD(H*) by Hg (1 + i3p2) = H#ypy + iHP 4y, then HY is a self-adjoint operator on
D(H*)+{D(H*) C D(Sf).

Theorem 3. Under the conditions of Theorem 2,
(HEw, 9) = EC (¥, 0)

for all € D(HY) and ¢ € (EF).

Proof. By ‘I'heorem 1, there exist a unique densely defined self-adjoint operator H*
which is bounded below and satisfies (H*v, ) = ES(¢,¢) for all ¢ € D(H*) and
for ally € (éf) From the linearity of Hf,, (HE%, ) = Ef(zj), w) for o =y +ithy €
D(Hg) and ¢ = 1 + 1 € D(ES).

Using consequences [[4], Corollary 2.4 and Theorem 2.6, p.323] of the first rep-
resentation Theorem and the simple fact (see e.q. [[5], p.279]) that two self-adjoint

operators, one of which extends the other, are actually equal, one has H* = HE.
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