The Pure and Applied Mathematics 3 (1996), No 1, pp. 67-71 J. Korea Soc. of Math. Edu. (Series B)

NOTES ON A SYMMETRIC BILINEAR FORM ASSOCIATED WITH REGULAR DIRICHLET FORM

KI SEONG CHOI, GYE TAK YANG

ABSTRACT. We will show how bilinear form \mathcal{E}_{μ} related with some smooth measures can be extended to the $L^2(\mathbb{R}^n, \mathbb{C})$ setting.

1. Introduction

We consider a regular Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(X, m)$ where X is locally compact separable metric space and m is a positive Radon measure on X with Supp[m] = X. S is the family of all smooth measures on X. Let $M = (\Omega, X_t, \zeta, P_x)$ be a Hunt process on X which is m-symmetric and associated with $(\mathcal{E}, \mathcal{F})$. For a given smooth measure μ , we denote by A_{μ} the unique positive continuous additive functional such that μ is the Revuz measure of A_{μ} . Let $\mu = \mu_+ - \mu_-$ be a signed Borel measure on X. If μ_+ and μ_- are smooth measures, then we write $\mu \in S - S$. For a Borel measure v on X, $L^2(X, v)$ is sometimes written $L^2(v)$ when the underlying context is clear.

For $\mu \in S - S$, we put

$$\mathcal{E}_{\mu}(f,g) = \mathcal{E}(f,g) + \int_{X} f(x)g(x)\mu(dx)$$

for all $f, g \in \mathcal{F} \cap L^2(|\mu| + m)$. We consider the case where X is the Euclidean space \mathbb{R}^n and m is a Lebesgue measure on \mathbb{R}^n . It is essential to quantum mechanics

Typeset by AMS-TEX

that functions are from the space $L^2(\mathbb{R}^n, \mathbb{C})$ of square-integrable (with respect to Lebesgue measure), complex-valued functions.

In this paper we extend \mathcal{E}_{μ} to $L^{2}(\mathbb{R}^{n},\mathbb{C})$ setting and find self-adjoint operator which represent the extension of \mathcal{E}_{μ} .

2. Extension of \mathcal{E}_{μ} to $L^{2}(\mathbb{R}^{n},\mathbb{C})$

Let us use the short notation $L^2(\mu)$ for $L^2(X,\mu)$, for $\mu \in S-S$, we put

$$\mathcal{E}_{\mu}(u,v) = \mathcal{E}(u,v) + \int_{X} u(x)v(x)\mu(dx)$$

for all $u, v \in \mathcal{F} \cap L^2(|\mu| + m)$

Theorem 1. If \mathcal{E}_{μ} is bounded below, densely defined and closed, then there exist a unique, densely defined self-adjoint operator H^{μ} which is bounded below and satisfies $(H^{\mu}u, v) = \mathcal{E}_{\mu}(u, v)$ for all $u \in D(H^{\mu})$ and $v \in D(\mathcal{E}_{\mu})$

Proof. See[4] Theorem 2.6

For $\alpha \geq 0$, μ and ν in S - S, $f \subset \mathcal{B}(X)$, we set

$$U_{\nu}^{\alpha+\mu}f(x) = E_x\left[\int_0^{\infty} e^{-\alpha t - A_t^{\mu}} f(X_t) dA_t^{\nu}\right]$$

provided the right hand side makes sense. When $\nu = m$, we simply write $U^{\alpha+\mu}f$ for $U^{\alpha+\mu}_{\mu}f$.

In the following Theorem 2, we consider the case where X is the Euclidean space \mathbb{R}^n and m is a Lebesgue measure on \mathbb{R}^n . If ψ is a function in $L^2(\mathbb{R}^n, \mathbb{C})$ (space of square integrable, complex valued functions), we denote by ψ_1 its real part and by ψ_2 its imaginary part; i.e., $\psi = \psi_1 + i\psi_2$

Theorem 2. Let $\mu \in S - S$ be such that

$$U^{\alpha+\mu}(L^2(m)) \subset L^2(m)$$

for some $\alpha > 0$. Suppose that \mathcal{E}_{μ} is closed. If we define \mathcal{E}_{μ}^{C} by

$$\mathcal{E}^{C}_{\mu}(\psi,\varphi) = \mathcal{E}_{\mu}(\psi_{1},\varphi_{1}) + \mathcal{E}_{\mu}(\psi_{2},\varphi_{2}) + i[\mathcal{E}_{\mu}(\psi_{2},\varphi_{1}) - \mathcal{E}_{\mu}(\psi_{1},\varphi_{2})]$$

for all $\psi, \varphi \in D(\mathcal{E}_{\mu}) + iD(\mathcal{E}_{\mu}) \subset L^{2}(\mathbb{R}^{n}, \mathbb{C})$, then \mathcal{E}_{μ}^{C} is densely defined, bounded below and closed.

Proof. Since $D(\mathcal{E}_{\mu})$ is dense in $L^{2}(\mathbb{R}^{n})$, $D(\mathcal{E}_{\mu}) + iD(\mathcal{E}_{\mu})$ is dense in $L^{2}(\mathbb{R}^{n}, \mathbb{C})$. Since $U^{\alpha+\mu}(L^{2}(m)) \subset L^{2}(m)$, \mathcal{E}_{μ} is bounded below [1. Theorem 4.1].

Let A be some real number satisfying $\mathcal{E}_{\mu}(u,u) \geq A||u||^2$ for all $u \in D(\mathcal{E}_{\mu})$ and let $\psi = \psi_1 + i\psi_2 \in D(\mathcal{E}_{\mu}) + iD(\mathcal{E}_{\mu})$. Then we have $\mathcal{E}^{C}_{\mu}(\psi,\psi) \geq A[||\psi_1||^2 + ||\psi_2||^2] = A||\psi||^2$ By the symmetry of \mathcal{E}_{μ} ,

To verify \mathcal{E}^C_μ is closed, it suffices to show that $D(\mathcal{E}^C_\mu)$ is complete under the norm

$$|||\psi|||^2 = \mathcal{E}_{\mu}^C(\psi,\psi) + (-A+1)||\psi||^2$$

Let (ψ_n) be a sequence in $D(\mathcal{E}^C_{\mu})$ such that $|||\psi_n - \psi_m||| \to 0$ as $n, m \to \infty$. Then $\psi_n = \psi_{n,1} + i\psi_{n,2}$ for each $n \in N$, where $\psi_{n,1}, \psi_{n,2}$ are in $D(\mathcal{E}_{\mu})$. By the symmetry of \mathcal{E}_{μ} ,

$$|||\psi_{n} - \psi_{m}|||^{2} = \mathcal{E}_{\mu}^{C}(\psi_{n} - \psi_{m}, \psi_{n} - \psi_{m}) + (-A + 1)||\psi_{n} - \psi_{m}||^{2}$$

$$= \mathcal{E}_{\mu}(\psi_{n,1} - \psi_{m,1}, \psi_{n,1} - \psi_{m,1}) + \mathcal{E}_{\mu}(\psi_{n,2} - \psi_{m,2}, \psi_{n,2} - \psi_{m,2})$$

$$+ (-A + 1)||\psi_{n,1} - \psi_{m,1}||^{2} + (-A + 1)||\psi_{n,2} - \psi_{m,2}||^{2}$$

$$= \mathcal{E}_{\mu}(\psi_{n,1} - \psi_{m,1}, \psi_{n,1} - \psi_{m,1}) + (-A+1)\|\psi_{n,1} - \psi_{m,1}\|^{2}$$

$$+ \mathcal{E}_{\mu}(\psi_{n,2} - \psi_{m,2}, \psi_{n,2} - \psi_{m,2}) + (-A+1)\|\psi_{n,2} - \psi_{m,2}\|^{2}$$

$$= \||\psi_{n,1} - \psi_{m,1}||^{2} + \||\psi_{n,2} - \psi_{m,2}||^{2}.$$

Since $\||\psi_n - \psi_m\|| \to 0$, $\||\psi_{n,1} - \psi_{m,1}\|| \to 0$ and $\||\psi_{n,2} - \psi_{m,2}\|| \to 0$. Since \mathcal{E}_{μ} is closed, there exist ψ_1, ψ_2 in $D(\mathcal{E}_{\mu})$ such that $\||\psi_{n,1} - \psi_1\|| \to 0$ and $\||\psi_{n,2} - \psi_2\|| \to 0$ as $n \to \infty$.

This means that $\||\psi_n - \psi\|| \to 0$ as $n \to \infty$. And since $\psi = \psi_1 + i\psi_2 \in D(\mathcal{E}^C_\mu)$ we conclude that \mathcal{E}^C_μ is closed.

Let H^{μ} be a self-adjoint operator as in Theorem 1. If we define H_C^{μ} on $D(H^{\mu}) + iD(H^{\mu})$ by $H_C^{\mu}(\psi_1 + i\psi_2) = H^{\mu}\psi_1 + iH^{\mu}\psi_2$, then H_C^{μ} is a self-adjoint operator on $D(H^{\mu}) + iD(H^{\mu}) \subset D(\mathcal{E}_{\mu}^{C})$.

Theorem 3. Under the conditions of Theorem 2,

$$(H_C^{\mu}\psi,\varphi)=\mathcal{E}^C_{\mu}(\psi,\varphi)$$

for all $\psi \in D(H_C^{\mu})$ and $\varphi \in (\mathcal{E}_{\mu}^C)$.

Proof. By Theorem 1, there exist a unique densely defined self-adjoint operator H^* which is bounded below and satisfies $(H^*\psi,\varphi)=\mathcal{E}^C_{\mu}(\psi,\varphi)$ for all $\psi\in D(H^*)$ and for all $\varphi\in(\mathcal{E}^C_{\mu})$. From the linearity of H^{μ}_C , $(H^{\mu}_C\psi,\varphi)=\mathcal{E}^C_{\mu}(\psi,\varphi)$ for $\psi=\psi_1+i\psi_2\in D(H^{\mu}_C)$ and $\varphi=\varphi_1+i\varphi_2\in D(\mathcal{E}^C_{\mu})$.

Using consequences [[4], Corollary 2.4 and Theorem 2.6, p.323] of the first representation Theorem and the simple fact (see e.q. [[5], p.279]) that two self-adjoint operators, one of which extends the other, are actually equal, one has $H^* = H_C^{\mu}$.

REFERENCES

- 1. Albeverio, S. and Ma, Zhi-Ming, Additive functional, nowhere Radon and Kato class smooth measures associated with Dirichlet forms, Osaka J. Math. 29 (1991), 247-265.
- 2. Blanchard, Ph. and Ma, Zhi-Ming, Smooth measures and Schrödinger semigroups, BiBos preprint 295 (1987).
- 3. Fukushima, M., Dirichlet forms and Markov process, North holland and Kodansha.
- 4. Kato, T., Perturbation theory for Linear operators, 2nd ed., Springer Verlag, Berlin (1976).
- 5. Reed, M. and Simon, B., Methods of Modern Mathematical Physics, revised and enlarged ed., Functional Analysis, Academic press, New York I (1980).

DEPARTMENT OF MATHEMATICES, KONYANG UNIVERSITY, NONSAN 320-800, KOREA