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ON THE PROPER QUADRATIC FIRST
INTEGRALS IN SYMPLECTIC MANIFOLDS

Sui Kyu Ryvu

1. Introduction

Classical mechanics begins with some variants of Newton’s laws. Lagrangian me-
chanics describes motion of a mechanical system in the configuration space which is
a differential manifold defined by holonomic constraints. For a conservative system,
the equations of motion are derived from the Lagrangian function on Hamilton’s
variational principle as a system of the second order differential equations. Thus,
for conservative systems, Newtonian mechanics is a particular case of Lagrangian
mechanics.

By means of a Legendre transformation which transforms functions on the vec-
tor space to functions on the dual space, al Lagrangian system of n second order
differential equations is converted into a remarkably symmetrical system of 2n first
differential equations called Hamilton’s equations or canonical equations.

The fundamental structure of a Hamiltonian mechanical system has proved to be
a symplectic structure. The principal cause of introduction of symplectic geometry
in mechanics is to be sought in Hamilton’s equations in R x R™.}

Although the problems of the proper quadratic first integrals(QFI) have been
treated by various authors {1],[2],[3], etc., the geometric and physical meaning of
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the proper QFI have remained open for a long time. We have focused our attention
on this problem for symplectic manifolds, mainly on the relations between the QFI

and the trajectories of a particle motion.

M. Ikeda and Y. Nishino have classified the dynamical system treated here into
the three type I, II and III.

Among the proper QFI, which contain 5 independent factors, but in type I, there
no proper QFI. Therefore we are led to consider the types II and III. In the present
paper we have further classified the proper QFI with respect to the trajectories. For
the type III, the proper QFI exhibits a simple dependence on the initial position,
but not on the initial velocity. Important is the type II since we must consider the

energy dependence when we treat the velocity dependence.

We may say that among the proper QFI the total energy is the only one that
does not depend on any initial condition. Analysis treated here is closely related

with the study of the general Killing tensors which remains open in the meaning.

2. Preliminaries

In a natural dynamical system with n-degrees of freedom, the kinetic and poten-
tial energies take the forms T = Enj;(x)xfa:', U = U(z), where z* and &* are the
generalized coordinates and velocities respectively, n;:(z) and U(z) functions of 2*
alone. As was stated in introduction, the configuration space may be regarded as a

symplectic manifold having the fundamental tensor n;; .

We shall have a brief review of the results of Ref. 1, which are needed for the
present arguments. The configuration space is assumed to be a symplectic manifold

referred to Cartesian z'(i = 1,--- ,n), and the potential function U is restricted to
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be a function of the final coordinate z® only.?)

The QFI under consideration are written as the form

Q = yni@)eia’ +((a), myi =1, (21)

3) with the constraints
Vinji + Vinik + Ving; =0, (2.2)
Vil =mial' (V' = 20, (23)

where V; denotes the covariant differentiation with respect to z*, 7;; and , functions
of z*, are symmetries covariant tensor and scalar, respectively.

The general solution of (2.2) is given by
nji = ajiz'zt + arjiz® + aji, (2.4)

where axji, akxji and aj; are constants satisfying the following relations Ref. 1,

Propositions 2.1.3). For ajji, we have

Gnnnn = Gznnn = Gnznn = Gnnzn = Gannz = 0y Gznin = G@inzn,
1 1
Gninz = Gnizn = Ginnz = Ginzn = _Ea)\znn = _Eannz\z,
1 1
Ouinz = Qurzn = Arzun = _Eap.nz\:c = _’éanuz\za Aprzn t Qazun + Qzprn = 0,
Auprz = Qupzd = Quudz, Qupiz + Quizp + Guzur = 0. (25)
2)Unless stated otherwise, small Latin indices take the values 1,--+ ,n, Greek ones 1,2,--- ,n—1

and the summation convention is adopted.
3)the dot denote the generalized velocities.



86 SHI KYU RYU

For aiji, we have

1 1
Gunn =0, Gz = Qpzn = —'éaznn’ Axnz = Qxrzn = "‘Ean,\za Aurz = Quzi,
Aurz + Qrzp + Azpr = 0, (26)

and moreover for aji, a;; = a;j. The coefficients ajj;, aij; and a;; are classified
according to the number n appearing in the indices. This number n is called the
type coeflicients.

From the condition (2.3) related to U, we have further restrictions on ajj; such

that all components axj; of type I vanish (in Ref. 1, Proposition 3.1), i.e.,
Apprzr = Ouniz = Quinz = Qurzn = 0 (27)

and for ayji,

Axzn = AzAn- (28)

Based on the elementary estimates of the coefficients, the natural dynamical
system under consideration is classified into three types according to the type of U,
where we assumed that U’ # 0 since the case U' = 0 is of no importance.

Type I U" #0, 3U' + (2™ + k)U" #0.

Type II: U" # 0, 3U' + (z™ + k)U" = 0.

In these iypes, U is given by

a

U=m+

b. (2.9)
Type III: U" = 0.
In this case, we have

U=az"+b (a#0). (2.10)
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In all the above cases, a is a nonzero constant and b, k are arbitrary constants.
Corresponding to the above cases, the explicit QFI are known as follows(in Ref. 1,
Theorems 3.1-3).

Type I: We have

1 1
= '2'(a,,,,,\z:1:"x“ + auxz + akx)xsz + a""{-i(:l:")2 + U(mn)} (2.11)

With nn = @nny Nzn =0, M2z = @uprz”z* + aue* + ary. ( = annU.

In this case, particular constraints for a's occur such that all the a's of type
nonzero vanish except @pn, 1.€., Grpzn = Qpzn = Grxzn = Gzn = 0. Moreover,
the number of linear]y independent QFI (with constant coefficients) is given by
(n* —n? +12)/12.

Type II: We have

Q2 =Q1 — arnzn(z™ + 2k):fv)‘:i:” + (2arnzn + @nzn)(z"™ + k)2%2"
- (a/\nznx’\mz + an:t:nxr)(-’I}n)2 - 2a(az\nzn$’\$z + anznzz)(zn + k)_2
(2.12)

With fnn = —20AnznZ 2% — 2nznT® 4 Gnn , Nzn = (20rnzn + Gnzn)(Z™ + k),
Me = QurzZ’T* + aurzc® — 2aanznz™(2” + k), ¢ = a{ann — 2(arnznz*z” +
GnznZ®)Hz™ + k)72 + bann.

In this case, the number of linearly independent QF1I is given by n(n + 1)(n? —
n+ 6)/12.

Type 11I: We have

Az Aan 1 z z
Q3 = Q1 — Arznz" 3" + (argnz™ + azq)d 3" + §{a;\mm’\$ +azaz”}  (2.13)

: _ _ A —
with Nnn = @nn, Pzn = ArznT” + azn, Mz = auuz\zxul'u + ap/\zx” = 2axzn™ + ang,

1
(= a(iakmx’\x’ + aznz®) + ann(az™ + b).
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The particular constraints for a’s occur; @xpzn = Gnzn = 0. The number of
linearly independent QF1I is equal to that in Type II, i.e., n{(n 4+ 1)}(n? —n +6)/12.

3. The equation of motion in particular dynamical systems

In this section, we shall consider solutions of the equation of motion in particular

dynamical systems. The equations of motion are written
=0, I"=-U', (3.1)
which are obtained as the Euler equations from a Lagrangian
1 oy 2 +1n\2 n ¢
L= @) + (™)) - Ui, (3.2
The first equations in (3.1) have the solutions
zh(t) = ayt + by, (3.3)

where a, and b, are constants.

Proposition 3.1. The solutions of second equation in (3.1) are given as follows.
(1) For a type II, i.e., U = a (2™ + k)~2 + b {(a # 0), put (z")?/2+ U = E"(E™
: constant). Then we have two cases according to constant E™:

(IL) E™ #5b :

™(t) = £/2(E" - b)t2 4+ &1t + ¢2 + ca, (3.4)

z"(t) = £/ 2V -2at + ¢4 + c5, (3.5)

(ILii) E™ = b:
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where ¢; are constants.

(2) For a type III, i.e., U = az™ 4+ b (a # 0), we have

1
z"(t) = —Eat2 + c¢t + ¢7, cg, €7 : constants. (3.6)

Proof. First observe that the second equation in (3.1) can be integrated as (£)2/2+
U = E™. Thus we have

dz™
—_——— = dt
/ Vv=2U + 2E"
In type II, the left-hand side becomes

(z™ + k)dz™
V—2a 4+ 2(E" —b)(z" + k)%

Thus we must consider two cases (II-i) and (II-i1). It is easy to see that the solutions
are given by (3.4) and (3.5). For a type III, a little calculation immediately give
the solution (3.6). Q.E.D.

Remark on type II: The constant E™ is total energy of potential function. The
situations are different between type (II-1) and (II-ii). This causes further classifi-
cations of the quadratic integrals, which are not treated in type I.

We now consider the proper QFI @, — Q; of type Il and Q3 — Q; of type III as

follows:

Q2 — Q1 =arnza[—2z"(z" + 2k)2* 3% + 22" + k)2 275"
- 2&&{%(&)2 +a(z" + k)" 2}]
. 1,
+ @nznf(z™ + k)2T2" — 2{5(:1:")2 + a(z™ + k)—2}], (3.7)

B P a i .
3 — Q1 = axzn 23 3% — 2% + —2 %) + azn(T®z™ + az®
2 ?
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where the expressions are slightly changed from (2.12) and (2.13).

From the above two expressions, we immediately know that each component of
QF1lis independent of time ¢, and is constant. Finally, we treat the type I with terms
of linear first integrals and energy. From the above statements, all the potentials
other than those in type II and III belong to the type I. Unlike the above two types,
the potential function U can not be determined explicitly. Therefore we cannot
solve the equations (3.1) and (3.2). Even if the solution is not known, it is already
known that for each component of QFI, @, is a constant. To illustrate the situation,

we give an example.

Example. U(z) = az?, where « is a positive constant. This potential function is
clearly of type I. The equations (3.1) and (3.2) with the above potential function

have the following solution:

V2a
v(t) = (ml, ma, + cos(+Vv2at + ,3) ) (3.9)

2(t) = (m1t+n1, mat +ng, SREV 2at)+ﬂ>,

where v(t) = —5 and m;, n;; B are integration constants. If we insert (3.8) and
(3.9) into @, or Q3, then we know immediately that each component is not constant
and depends on time t.

From this example, we know that the QFI of a certain type can never be a

constant along any trajectory of the other type.

4. The meaning of proper QFI

The mathematical and physical meaning of the proper QFI remain to be an
open problem. Only known quadratic first integral is total energy. This problem
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is closely related to the mathematical interpretations of the killing tensors 7;;. In
order to give some interpretations, we shall study the intimate relations between
these proper QFT and trajectories. The initial values of the trajectories are classified
as follows. For the initial position z¢ = z(0), we have two cases: (a) z¢ = (0,0,0),
origin and (b) zq # (0,0,0), other general position.

For the initial velocity vy = v(0), we have three cases: (c) vg = (0,0,k), £ #0 ,
i.e., z-direction, (d) vg = (m,n,0), at least one of m,n is not zero, i.e., vy is tangent
to the xy-plane and (e) vg = (m,n, k), other than (c) or (d).

First, we shall treat type III.

Type III. From (3.8), there are components of QFI as follows:

1 1
2 2 2 2
F, = ¢cgmang — crmj + Eanz, Fy = —cim{ + cgmang + —2-an1, F3 = cemo + ang,
Fy = (¢1 — cg)miny — aning + (crmiycgny)me, F5 = cgmy + any. (4.1)

The initial value of the trajectory from (3.6) is given by
zo = (n1, nz, ¢71), vo = (M1, mz, c). (4.2)

Based upon these explicit forms, we have the following proposition 4.1.

Proposition 4.1. Three components Fy, F,, F3 of the proper QFI can be trivi-
alized by a proper choice of the initial position zg.

Proof. Set zy at the origin, i.e., ny = ny = ¢; = 0. Then Fy, F,, F, vanish, but
the other F3 and Fs do not. Q.E.D.

Therefore we shall call Fy, F,, Fy the position-dependent QFI. Concerning the
initial velocity dependence, every component of (4.1) can not be trivialized by any

choice of vq.
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This proposition 4.1 asserts that QFI has less dependence on the initial velocity
than the initial position Therefore we can classify the QFI in type III as follows;

Q=Qs;+, (4.3)

where @) is expressed by linear first integral, and @3 is composed of the total energy
in the z-direction.

Finally we consider the type II.

Type II. From (3.7), the components of QFI are obtained as follows:

1
H, = §c1(m1n2 + m2n2) —Ccymime — 2(E; — b)nlng,

1 1
H, = é(cg + cz)mg + §C1m2n2 — (E: - b)n3,

1 1
Hy = §(c§ + cz)mf + §c1m1n1 —(E; - b)nr;',

H4 = -;-clml - 2(Ez - b),

Hs = %clmg - Q(E -z '-b) (44)

We know the initial value of trajectory by (3.4) and (3.5) as follows:
To =(n1,n2,:}:\/c—§+03), Vo =(m1,m2,c1/\/c_2), (4-5)
On the basis of these explicit forms, we have the following proposition.

Proposition 4.2. Two components H,, H; of the proper QFI can be trivialized
by the choi-= of the initial position xg.

Proof. Put zo at the origin, i.e.,, ny = ny = +,/c3 + ¢ = 0. Then we have
H,; = H; = 0, but the other H,;, H; and Hs do not vanish. Q.E.D.

Therefore we shall call H2, H3 the position-dependent QFI.
Next propositions are concerned with the initial velocity dependence. In this
case, we must consider two cases: (i) E, # b and (ii) E, = b.

For the first case, we have the following proposition.
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Proposition 4.3. If E, # b, each component of (4.4) can not be trivialized by the
choice of the initial position zq.

Similarly for the above case (ii), we have the following proposition.

Proposition 4.4. For the case (ii) E; = b, the components (4.4) of the QFI are
given by

1 1 1
H, = §cl(m1n2 +mang) — cimumsg, Hp = 5(C§ + co)m3 + 5C1mana,

1 1 1 1
H; = E(cg + 62)mf + é‘clmlnla Hy = §C1m1a Hs = §Clm2- (4.6)

Proof. The above results can immediately be obtained from (4.3) with E, = b.
Q.E.D.

Similarly we can obtain a result concerning the initial value dependence. We
have the following proposition.

Proposition 4.5.
(a) Ifvg =(0,0,c1/\/c2), c2 # 0, then all components of (4.6) of QFI vanish.

(b) Ifve = (my, mg, 0) (at least one of my, m; is not zero), then the nontrivial

components are the following two:

1 1
H, = 5(cg + c2)mj and Hs = 5(05 + e2)mi (47)

Thus we have shown the initial value dependence of the QFI explicitly.
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