J. Korea Soc. of Math. Edu. (Series B)
The Pure and Applied Mathematics 3, No. 2 (1996) pp. 103-111

ON UNIVALENT SUBORDINATE FUNCTIONS

Suk Joo Park

ABSTRACT. Let $f(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots$ be regular and univalent in $\triangle = \{z : |z| < 1\}$. In this paper, using the proper subordinate functions, we investigate the some relations between subordinations and conditions of functions belonging to subclasses of univalent functions.

1. Introduction

Let

$$f(z) = z + a_2 z^2 + \dots + a_n z^n + \dots$$
 (1.1)

be regular and univalent in $\triangle = \{z : |z| < 1\}$, and suppose that $f(\triangle) = D$. If g(z) is regular in \triangle , f(0) = g(0), and $g(z) \in D$, then g(z) is said to be subordinate to f(z) in \triangle , and we write [7] [8]

$$g(z) \prec f(z) \tag{1.2}$$

and also f(z) is said to be superordinate to g(z) in \triangle , (or f(z) is said to be majorant to g(z) in \triangle).

The subordinate function $g(z) \prec f(z)$ in \triangle if and only if there is a function b(z) that satisfies the conditions of Schwarz's Lemma |b(z)| < |z| for 0 < |z| < 1 and [8]

$$g(z) = f(b(z)) \tag{1.3}$$

Received by the editors Oct. 12, 1996 and, in revised form, Nov. 20, 1996.

¹⁹⁹¹ Mathematics Classification.

Key words and phrases. univalent functions, subordinate functions, starlike, convex, close-to-convex and α -spirallike functions

This study was supported by Research Funds from Chosun University, 1995.

$$g(|z| < r) \in f(|z| < r) \ |z| \le r < 1.$$
 (1.4)

Let \mathcal{A} be the class of univalent functions $f(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots$ which are regular in \triangle .

Let ST be the subclass of \mathcal{A} composing of functions which are starlike. A function f(z) belonging to the class \mathcal{A} is said to be starlike if and only if $z^{-1}f(z) \neq 0$ in Δ and [4] [8], Re denotes real part,

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \text{ in } \triangle.$$
 (1.5)

Let CV be the subclass of \mathcal{A} composing of functions which are convex. A function f(z) belonging to the class \mathcal{A} is said to be convex if and only if $f'(z) \neq 0$ in \triangle and [4] [8]

$$Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0 \quad \text{in } \triangle.$$
 (1.6)

Let CC be the subclass of \mathcal{A} composing of functions which are close-to-convex. A function f(z) belonging to the class \mathcal{A} is said to be close-to-convex if and only if $f(z) - f(-z) \neq 0$ in \triangle and [5] [8]

$$Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0 \text{ in } \triangle.$$
 (1.7)

Let αS be the subclass of \mathcal{A} composing of functions which are α -spirallike. A function f(z) belonging to the class \mathcal{A} is said to be α -spirallike if and only if [6] [8]

$$Re\left\{e^{-i\alpha}\frac{zf^{'}(z)}{f(z)}\right\} > 0 \quad \text{in } \triangle.$$
 (1.8)

In this paper, using the proper subordinate functions, we investigate the some relations between subordinations [(\$.1),(3.2),(3.3) and (3.4)] and conditions [(1.5),(1.6), (1.7) and (1.8)] of functions belonging to these subclasses (ST, CV, CC and αS) of the class of univalent functions.

2. Preliminaries

In this chapter, we investigate the relations between subordinate function and regular functions g(z,t) and b(z,t), depending upon a real parameter t, and then using them to obtain some results on univalent subordinate functions.

Definition 2.1. Let b(z,t) be regular in \triangle for $0 \le t \le 1$. Let

$$|b(z,t)| < 1$$
 for $|z| < 1$, $0 \le t \le 1$, $b(z,0) = z$ (2.1)

we define

$$b(z) = \lim_{t \to 0^+} \left\{ \frac{b(z, t) - z}{zt^p} \right\}$$
 (2.2)

where p is a positive real number. We obtain the following relation.

Theorem 2.2. If b(z) is regular in \triangle , Re $b(0) \neq 0$, b(0, t) = 0, and $0 \leq t \leq 1$, then Reb(z) < 0 in \triangle .

Proof. i, Since $|b(z,t)| \le |z|$ in \triangle with equality only if $b(z,t) = zexpi\theta(t)$ by Schwarz's Lemma, the function

$$m(z,t) = \frac{b(z,t) - z}{b(z,t) + z}$$
 (2.3)

is regular and Rem(z,t) < 0 in \triangle .

ii, When $b(z,t) = zexpi\theta(t)$, Since $m(z,t) = i\tan(1/2\theta(t))$ is purely imaginary, Re(m,t) = 0. Thus m(z,t) is regular and $Rem(z,t) \le 0$ in \triangle with equality occurring only if $b(z,t) = zexpi\theta(t)$. Hence

$$Reb(z) = Re \lim_{t \to 0^{+}} \left\{ \frac{b(z,t) - z}{zt^{p}} \right\}$$

$$= Re \lim_{t \to 0^{+}} \left\{ \frac{b(z,t) - z}{zt^{p}} \cdot \frac{b(z,t) + z}{b(z,t) + z} \right\}$$

$$= Re \lim_{t \to 0^{+}} \left\{ \frac{b(z,t) - z}{zt^{p}} \cdot \frac{2z}{b(z,t) + z} \right\}$$

$$= Re \lim_{t \to 0^{+}} \left\{ \frac{2m(z,t)}{t^{p}} \right\} < 0 \quad \text{in } \triangle$$

$$(2.4)$$

This completes the proof of theorem 2.2.

Definition 2.3. Let g(z,t) be regular in \triangle , $0 \le t \le 1$. Let g(z,0) = f(z) and g(0,t) = 0. We define

$$g(z) = \lim_{t \to 0^+} \left\{ \frac{g(z, t) - g(z, 0)}{zt^p} \right\}$$
 (2.5)

where p is a positive real number and g(z,t) is continuous from $t\to 0^+$.

We obtain the following relation.

Theorem 2.4. If $g(z,t) \prec f(z)$ in \triangle , $0 \le t \le 1$, and $Reg(0) \ne 0$, then

$$Re\left\{\frac{f'(z)}{g(z)}\right\} < 0 \quad in \ \triangle.$$
 (2.6)

Proof. Since $g(z,t) \prec f(z)$ in \triangle we have $g(z,t) = f\{b(z,t)\}$ in \triangle , $0 \le t \le 1$, where b(z,t) is regular, continuous and $|b(z,t)| \le 1$ in \triangle , $0 \le t \le 1$. Since g(z,0) = f(z) and f(z) is univalent in \triangle we have b(z,0) = z. Since f(0) = 0, g(0,t) = 0 and f(z) is univalent in \triangle we have b(0,t) = 0. Now we write

$$\frac{g(z,t) - g(z,0)}{zt^p} = \frac{f\{b(z,t)\} - f\{b(z,0)\}}{zt^p} \cdot \frac{b(z,t) - b(z,0)}{b(z,t) - b(z,0)}
= \frac{f\{b(z,t)\} - f\{b(z,0)\}}{b(z,t) - b(z,0)} \cdot \frac{b(z,t) - b(z,0)}{zt^p}$$
(2.7)

$$\lim_{t\to 0^+} \left\{ \frac{g(z,t)-g(z,0)}{zt^p} \right\} = \lim_{t\to 0^+} \frac{f\{b(z,t)\}-f\{b(z,0)\}}{b(z,t)-b(z,0)} \cdot \lim_{t\to 0^+} \frac{b(z,t)-b(z,0)}{zt^p}$$

By (2.2), (2.5) and b(z,0) = z

$$g(z) = f'(z) \cdot b(z), \quad f'(z) \neq 0.$$
 (2.8)

Therefore b(z) = g(z)/f'(z), Reb(0) = Reg(0). By Reb(0) = Reg(0) and theorem 2.2 we have

$$Re\frac{g(z)}{f'(z)} = Reb(z) \le 0 \text{ in } \triangle.$$
 (2.9)

When g(z) is regular in \triangle and $g(0) \neq 0$, we have

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}<0 \ \ ext{in } \triangle.$$

This completes the proof of theorem 2.4.

3. Some Result

In this chapter, using the preliminaries, we investigate some results which there exists each condition of the subclass (ST, CV, CC and $\alpha S)$ of the class of univalent functions for each given proper relation subordinated to univalent functions that $f(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots$ are regular and univalent in Δ .

Theorem 3.1. Let

$$(1-t)f(z) \prec f(z), \ 0 \le t \le 1, \quad in \ \triangle$$

then

$$Re\left\{rac{zf^{'}(z)}{f(z)}
ight\} > 0 \ \ and \ f(z) \in ST \ in \ \triangle.$$

Proof. From (3.1) since $(1-t)f(z) \prec f(z), 0 \le t \le 1$, letting

$$g(z)=(1-t)f(z)=f\{b(z,t)\}$$

and in (2.5) taking p = 1 we have

$$g(z) = \lim_{t \to 0^+} \frac{g(z, t) - g(z, 0)}{zt} = \frac{1}{z} \frac{\partial g(z, t)}{\partial t} = \frac{1}{z} (-f(z)) = -\frac{f(z)}{z} \neq 0$$

From (2.6), since

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}<0 \ \ ext{in} \ riangle$$

we have

$$Re\left\{\frac{f^{'}(z)}{g(z)}\right\} = Re\left\{\frac{f^{'}(z)}{-f(z)/z}\right\} = Re\left\{-\frac{zf^{'}(z)}{f(z)}\right\} < 0 \ \ \text{in} \ \triangle.$$

Hence

$$Re\left\{rac{zf^{'}(z)}{f(z)}
ight\}>0$$

and from (1.5) $f(z) \in ST$ in \triangle .

This completes the proof of theorem 3.1.

Theorem 3.2. Let

$$\frac{1}{2}\left\{f(e^{it}z) + f(e^{-it}z)\right\} \prec f(z), \quad 0 \le t \le 1, in \triangle, \tag{3.2}$$

then

$$Re\left\{1+rac{zf^{''}(z)}{f^{'}(z)}
ight\}>0 \ \ and \ f(z)\in CV \ in \ \triangle.$$

Proof. From (3.2), since $\frac{1}{2}\left\{f(e^{it}z)+f(e^{-it}z)\right\} \prec f(z), 0 \leq t \leq 1, in \triangle$, letting

$$g(z,t) = f(e^{it}z) + f(e^{-it}z)$$

and in (2.5) taking p=2 and using L'Hospital rule we have

$$\begin{split} g(z) &= \lim_{t \to 0^+} \frac{g(z,t) - g(z,0)}{zt^2} = \lim_{t \to 0^+} \frac{\frac{\partial g(z,t)}{\partial t}}{2zt} \\ &= \frac{1}{2z} \frac{\partial^2 g(z,0)}{\partial t^2} = -\left\{zf''(z) + f'(z)\right\} \end{split}$$

since, $f^{'}$ and $f^{''}$ denote $\frac{\partial f}{\partial t}$ and $\frac{\partial^2 f}{\partial t^2}$ respectively,

$$\frac{\partial g(z,t)}{\partial t} = f'(e^{it}z)ize^{it} + f'(e^{-it}z)ze^{-it}(-i)$$
$$= iz\{f'(e^{it}z)e^{it} - f'(e^{-it}z)e^{-it}\}$$

$$\begin{split} \frac{\partial^2 g(z,t)}{\partial t^2} &= iz[\{f^{''}(e^{it}z)ze^{it}ie^{it} + f^{'}(e^{it}z)e^{it}i\} - \{f^{''}(e^{-it}z)e^{-it}z(-i)e^{-it} \\ &\quad + f^{'}(e^{-it}z)e^{-it}(-i)\}] \\ \frac{\partial^2 g(z,0)}{\partial t^2} &= iz[\{f^{''}(z)zi + f^{'}(z)i\} - \{f^{''}(z)z(-i) + f^{'}(z)(-i)\}] \\ &= -z\{f^{''}(z)z + f^{'}(z)\} - z\{f^{''}(z)z + f^{'}(z)\} \\ &= -2z\{f^{''}(z)z + f^{'}(z)\} \end{split}$$

From (2.6), since

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}<0 \ \ ext{in} \ riangle$$

we have

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}=Re\left\{rac{f^{'}(z)}{-\{zf^{''}(z)+f^{'}(z)\}}
ight\}<0 ext{ in }\triangle.$$

Since f'(0) = 1, g(0) = -1 and $Reg(0) \neq 0$

$$Re\left\{rac{1}{1+zrac{f''(z)}{f'(z)}}
ight\}>0 \ \ ext{in } \triangle.$$

Hence

$$Re\left\{1+z\frac{f^{''}(z)}{f^{'}(z)}\right\}>0 \text{ and from (1.6) } f(z)\in CV \text{ in } \triangle.$$

This completes the proof of theorem 3.2.

Theorem 3.3. Let

$$(1-t)f(z) + tf(-z) \prec f(z), \ 0 \le t \le 1, \quad in \ \triangle$$

then

$$Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0 \text{ and } f(z) \in CC \text{ in } \triangle$$

Proof. From (3.3) since $(1-t)f(z) + tf(-z) \prec f(z), 0 \le t \le 1$, in \triangle , letting

$$g(z,t) = (1-t)f(z) + tf(-z)$$

and in (2.5) taking p = 1. We have

$$g(z) = \lim_{t \to 0^+} \frac{g(z,t) - g(z,0)}{zt} = \frac{1}{z} \frac{\partial g(z,t)}{\partial t} = \frac{1}{z} \{ -f(z) + f(-z) \}$$

and $g(0) \neq 0$. From (2.6), since

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}<0 \ \ ext{in} \ igtriangle$$

we have

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}=Re\left\{rac{zf^{'}(z)}{-f(z)+f(-z)}
ight\}<0 \ \ ext{in} \ riangle.$$

Hence $Re\left\{\frac{zf^{'}(z)}{f(z)-f(-z)}\right\} > 0$ and from (1.7) $f(z) \in CC$ in \triangle .

This completes the proof of theorem 3.3.

Theorem 3.4. Let

$$(1 - te^{i\alpha})f(z) \prec f(z), \quad in \ \triangle$$
 (3.4)

where $0 \le t \le 1$, α is a real constant and $|\alpha| < \frac{\pi}{2}$, then

$$Re\left\{e^{-i\alpha}\frac{zf^{'}(z)}{f(z)}\right\} > 0 \quad and \ f(z) \in \alpha S \ in \ \triangle.$$

Proof. From (3.4) since $(1 - te^{i\alpha})f(z) \prec f(z), in\triangle$, letting

$$g(z,t) = (1 - te^{i\alpha})f(z)$$

and in (2.5) taking p=1 we have

$$g(z) = \lim_{t \to 0^+} \frac{g(z,t) - g(z,0)}{zt} = \frac{1}{z} \frac{\partial g(z,t)}{\partial t} = \frac{1}{z} \{ -e^{i\alpha} f(z) \}$$

and from (2.6), since

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}<0 \ \ ext{in} \ riangle$$

we have

$$Re\left\{rac{f^{'}(z)}{g(z)}
ight\}=Re\left\{rac{f^{'}(z)}{-e^{ilpha}f(z)/z}
ight\}=Re\left\{rac{-zf^{'}(z)}{e^{ilpha}f(z)}
ight\}<0 \ \ ext{in} \ \ riangle.$$

Hence

$$Re\left\{e^{-i\alpha}\frac{zf^{'}(z)}{f(z)}\right\}>0$$

and from (1.8) $f(z) \in \alpha S$ in \triangle .

This completes the proof of theorem 3.4.

REFERENCES

- S.S.Miller and P.T.Mocann, On Some classes of first-order differential subordinations, Michigan Math J 32 (1985), 185-195.
- S.Singh and R.Singh, Subordination by univalent functions, American Math.Sci. 82.1 (1981), 39-47.
- 3. S.D.Bernard, Special classes of subordinate functions, Duke Math. J. 33 (1966), 55-67.
- D.R.Wilken and J.Feng, A remark on convex and starlike functions, J. London Math.Sci (2), 21 (1980), 287-290.
- 5. W.Kaplan, Close-to-convex Schlicht functions, Michigan Math. J. 1 (1952), 169-185.
- 6. P.N. Chichra, Regular functions f(z) for which z' f(z) is α -spiral-like, Proc. Amer. Math.Sci 49, 1 (1975), 151-160.
- 7. S.Y.Lee, Golugins's variational principle and extreme spirallike products, Pro.3rd Int.Col. on Finite or Infinite Dimensional Complex Analysis (1995), 203-211.
- 8. A.W.Goodman, Univalent Function, Univ. of South Florida Mariner Pub.Com.Inc (1983).

Department of Mathematics Education, Chosun University, Kwang Ju, 501-759, Korea