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ATTRACTIVITY AND ASYMPTOTIC
STABILITY IN DYNAMICAL POLYSYSTEMS

YooN HoE Gu AND HYUN So0K Ryu

ABSTRACT. We investigate that if M is a compact subset of c-first countable space
X, then z € Ay(M) if and only if J(z) # ¢ C M.

1. Introduction

N. Kalouptsidis, A. Bacciotti and J. Tsinias have extend the properties of sta-
bility, limit set, prolongational limit, attractivity and asymptotic stability reffered
to [1] for dynamical polysystems.

In this section the previous results studied for the multivalued map I' in [2] and
[5] are examined for the reachable map R.

Throughout this paper the space X will be locally compact metric space, unless
otherwise restricted.

A dynamical system on X is a continuous map 7 : X xR — X with the following
properties:
(i) m(z,0)=z forallz e X,
(i) w(w(z,s),t) =n(x,s+1t) forallz € X and s,t € R.
We call a family of dynamical systems {7;|i € I} a dynamical polysystem on X.
Dynamical polysystems arise in control theory.
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If 2% denotes the set of all subsets of X and R* the set of nonnegative real
numbers, the reachable map of the polysystem {m;|i € I} is the multivalued map
R: X xRt — 2% defined by

R(z,t) = {y € X]| there exist an integer n,t,,...,t, € R* and

n
%1,...,15 € I such tha,tZt,- =tand y =
i=1

i (T, (T (T (2, 81), 82), -+ tnct), ) )

For A C X and t € R*, we let R(A,t) = LEJAR(x, t). Also, we define R(z,R™)
by R(x). For AC X, we let R(A) = LGJAR(a:). We recall some definitions from [5].

Definition 1.1. A map R is called a cluster map if DR = R.

Definition 1.2. Let ¢ # A C X. A map R is uniformly bounded on A if, for each
& € A, there is a neighborhood U of z such that R(U, R+) is compact.

Definition 1.3. A map R is upper semicontinuous at (z,t) € X x R* if for any
sequences (Tn,tn) — (z,t) and ¥, € R(zn,1n), there is a sequence 2, € R(x,t)
such that d(yn,2n) — 0. A map R is upper semicontinuous on A C X if for all
(z,t) € A x R*, it is upper semicontinuous at (z,t).

Proposition 1.4. A map R is upper semicontinuous at (z,t) € X x R™ if and
only if for each € > 0, there is a 6 > 0 such that

R(B(z,6), (t — 6,t + 8)) C B(R(z,t),e).

Proof. To prove the necessary condition, assume that there is a € > 0 such that for
each § > 0,
R(B(.’L', 5)’ (t - 63 t+ 6)) ¢ B(R(wa t)a E)'

Then, for each integer n, R(B(z, 1), (t — 1,t + 1)) ¢ B(R(x,t),e). Thus there is a
sequence y, € R(B(z, 1), t—,t+1)) such that y. ¢ B(R(z,t),&). We can choose
sequences T, € B(z, %),tn € (t—L,t+ 1) so that yp € R(n,tn), Zn — z and
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t, — t. Since R is upper semicontinuous at (z,t), there is a sequence z, € R(z,t)
such that d(yn,2,) — 0. We can choose an integer m so that d(ym,zm) < €. It
follows that d(ym, R(z,1)) < d(Ym, 2m) < €. Clearly, y., € B(R(z,t),¢). This is a
contradiction. Hence for each € > 0, there is § > 0 such that

R(B(z,d), (t — 4,t + 8)) C B(R(z,1),¢).

Next, we shall show the sufficient condition. Suppose that R is not upper semi-
continuous at (z,t). Then there are sequences (Tn,tn) — (Z,1), yn € R(Zn,tn) and
¢ > 0 such that for each n,d(yn, R(z,t)) > €. By assumption, there is a § > 0 such
that

R(B(z,9), (t — 6,t +d)) C B(R(z,1),¢€).

Also, there is an integer m such that z,, € B(z,0),tm € (t — 4,t +J). Thus
we have ym € R(Zm,tm) C R(B(z,d),(t — d,t +9)) C B(R(z,t),e). Clearly,
d(ym, R(z,t)) < £.This contradiction shows that R is upper semicontinuous at (, t).
The Proposition is proved.

Proposition 1.5. If R is uniformly bounded on A C X and cluster, then R is
upper semicontinuous on A.

Proof. Assume that R is not upper semicontinuous at (z,t). Then there are se-
quences (Zn.tn) — (2,t),yn € R(2n,t,)and € > 0 such that for each n, d(y,, R(z, 1))
> ¢. By hypothesis, there is a neighborhood U of z such that m is compact.
We may assume that z,, € U. Thus we have y, € R(zn,t,) C R(U,R"). Since
}—3(—U,T+) is compact, there is a sequence y, — y. We can find an integer m with
d(ym,y) < €. It follows that y € DR(x,t). Since R is a cluster map, we have
d(ym, R(z,t)) < d(ym,y) < €. This contradicts the fact that d(y.,, R(z,t)) > €.

The proposition is completed.

2. Attractivity and Asymptotic Stability
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In this section the concept of attractivity and asymptotic stability are described
and are characterized in terms of the basic multivalued map D, J and A.
Let M be a compact subset of X.

Definition 2.1. A set M is stable if for any neighborhood U of M, there exists a
neighborhood V' of M such that R(V) c U.

Definition 2.2. The region of attraction of M is denoted by A(M) and is defined
by
A(M) = {z € X| there exists t € R such that R(z, [t,00)) C U
for any neighborhood U of M}.

Definition 2.3. A set M is called an attractor if A(M) contains a neighborhood
of M.

Definition 2.4. The region of uniform attraction A,(M) is defined by

Ay (M) = {z € X| there exists a neighborhood V of z and t € R
such that R(V,[t,00)) C U for any neighborhood U of M}.

Definition 2.5. A set M is called an uniform attractorif A, (M) contains a neigh-
borhood of M.

Definition 2.6. A set M is asymptotically stable if M is stable and an attractor.

Proposition 2.7. Let M be a compact subset of X. Then M is stable if and only if
for any neighborhood U of M, there is a compact positively invariant neighborhood
V of M such that V C U.

Proof. Suppose that M is stable. We can choose a comapct neighborhood W of
M so that W C U. By stability of M, there is a neighborhood A of M such that
R(A,RT) c W. Let V = R(A,R+). Then V is a compact positively invariant
neighborhood of M. Thus the necessary condition is proved. The proof of the

reverse is straightforward.
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Proposition 2.8. Let M be a compact subset of c-first countable space X. Then
z € A(M) if and only if A(z) # ¢ C M.

Proof. Suppose that z € A(M). Take a compact neighborhood U of M. Then there
is s € R* such that R(z, [s,00)) C U. Since R(z, [s,00)) is compact, A(z) # ¢. We
claim that A(z) C M. Suppose that A(z) ¢ M. Then there is y € A(z) such that
y ¢ M. We choose a neighborhood V of M such that y ¢ V. Thus there is r € Rt
such that R(z,[r,00)) C V. We have A(z) C R(z,[r,00)) C V and y € V. This is
a contradiction. Hence A(z) C M. Next, we show that the reverse holds. Let U
be any neighborhood of M. Then U is any neighborhood of A(x). By compactness
of M, A(z) is compact. Thus there exists s € R* such that R(x,[s,00)) C U. It
follows that € A(M). Hence the proposition is complete.

A similar description holds for the region of uniform attraction A,(M) as the
next proposition indicates.

Proposition 2.9. Suppose that M is a compact subset of c-first countable space
X. Thenxz € Au(M) if and only if J(x) 6 C M.

Proof. Let J(z) be a nonempty subset of M. Then it is compact. Suppose U is any
neighborhood of M. Since J(z) C M,U is any neighborhood of J(x). Thus there
exists a neighborhood V of z and ¢ € R* such that R(V,[t,00)) C U. Hence we
have z € A,(M).

Conversely, let € A,(M). We choose a neighborhood U of M such that U
is compact. Therefore, there exists a neighborhood V of z and ¢t € R* such that
R(V,[t,0)) C U. Since R(z,[t,00)) C R(V,[t,0)) C U, R(z, [t,00)) is compact.
Thus A(z) # ¢. Clearly, J(z) # ¢. Next we show that J(zx) C M. Suppose that
J(z) ¢ M. We choose y € J(z) — M. Then there exists a neighborhood W of M
such that y ¢ W. Thus there exists a neighborhood V of z and t € R* such that
R(V, [t,00)) C W. We clearly have y € J(x) C R(V,[t,00)) C W. This contradicts
the fact that y € W. Hence J(z) C M. The proposition is proved

Proposition 2.10. Let M be a comapct subset of X and suppose M 1is stable. Then
there is a neighborhood W of M such that a cluster map R is uniformly bounded on
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W.

Proof. We can choose a compact neighborhood U of M. By assumption, there is a
d > 0 such that R(B(M,28),R*) C U. Let W = B(M, §). For each z € W, we have
R(B(z,6),R*) C R(B(W,§),R*) C R(B(M,26),Rt) C U. Thus R(B(z,4d),R*) is
compact. Thus the proposition is proved.

Proposition 2.11. Let a compact subset M of X be asymptotically stable. Then
M is a uniform attractor.

Proof. By proposition 1.5 and 2.10, there is a neighborhood W of M such that
W C A(M) and R is upper semicontinuous on W. Let 2 € W. Since M is stable,
for any neighborhood U of M, there is € > 0 such that R(B(M,2),R") Cc U.
Clearly, z € A(M). Thus there is s € RT such that R(z, [s,00)) C B(M,¢€). Since
R is upper semicontinuous at (z, s), there is a neighborhood V of z such that
R(V,s) C B(R(z,s),e) C B(B(M,e),e) C B(M,2¢). For each y € R(V,[s,)),
there is z € V and t > s such that y € R(z,t). From the fact that R(2,t) =
R(R(z,s),t—s) C R(R(V,s),t—s) C R(B(M,2¢),Rt) C U, we have y € U and so
R(V,[s,00)) C U. It follows that z € A,(M). We have W C A,(M). Hence M is
a uniform attractor.

REFERENCES

1. N.P. Bhatia and G.P. Szegd, Stability Theory of Dynamical Systems, Springer-Verlag, New
York, (1970).

2. A. Bacciotti and N. Kalouptsidis, Topological dynamics of control systems, stability and at-
traction, Nonlinear Analysis 10 (1986), 547-565.

3. J. Tsinias, A Lyapunov description of stability in control systems, Nonlinear Analysis 13
(1989), 63-74.

4. J. Tsinias, N. Kalouptsidis and A. Bacciotti, Lyapunov functions and stability of dynamical
polysystems, Math. Systems Theory 19 (1987), 333-354.

5. J. Tsinias and N. Kalouptsidis, Prolongations and stability analysis via Lyapunov functions
of dynamical polysystermns, Math. Systems Theory 20 (1987), 215-233.

6. J.S. Park, Stability in topological dynamics, J. Korean Math. Soc. 25(1) (1988), 67-76.

DEPARTMENT OF MATHEMATICS HANSEO UNIVERSITY SEOSAN 356-820, KOREA

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, Ko-
REA



