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ON THE SOME PROPERTIES OF THE LIMITS SETS

SEUNG WHA YEOM AND KYUNG JiN MIN

ABSTRACT. In this paper, we investigate the properties of various limit sets. In
particular, we study the relationship between the recurrent set and special -limit
set. And also we show that if  is not almost periodic, then z is special a-limit.

1. Introduction

Let I be the unit interval, S the circle and X be a compact metric space. And
let C°(X, X) denote the set of continuous maps from X into itself.

Let f € C°(X, X). For any positive integer n, we define f™ inductively by f* = f
and f**t! = fo f". Let fO denote the identity map of X. The forward orbit Orb(z)
ofz € X istheset {f*(x) | k=0,1,2,--- }. Usually the forward orbit of z is simply
called the orbit of x.

For any continuous map f from a compact metric space X to itself, throughout
this paper, I, AI’>, R and ST denote the set of periodic points, almost periodic
points, recurrent points and specialy-limit points of f, respectively. And for any
set Y, Y denotes the closure of Y as usual.

In this paper, we study the relationship between the recurrent set and special
~-limit set. And also we show that if x is not almost periodic, then x is special
o-limit. In fact, we obtain the following results :

Theorem A. Let f be a continuous map of the circle S to itself. Suppose that P
is empty. Then R C ST.

Received by the editors Nov. 14, 1996 and, in revised form, Dec. 24, 1996.
1991 Mathematics Subject Classification. Primary 26A, 58F.

123



124 SEUNG WHA YEOM AND KYUNG JIN MIN

Theorem B. Ifz € P_ NP, then z € sa(z). If in addition  is not almost
periodic, then for some € > 0, either z € sa(y) for everyy € (x —¢,z] or x € sa(y)
for every y € [z, + ¢€).

2. Basic concepts

Let (X, d) be a compact metric space and f € C%(X, X). A point z € X is called
a periodic point of f if for some positive integer n, f*(x) = x. The period of z is
the least such integer n. We denote the set of periodic points of f by P.

A point z € X is called a recurrent point of f if there exists a sequence {n;} of
positive integers with n; — oo such that i (xz) — . We denote the set of recurrent
points of f by R.

A point y € X is called an w-limit point of z if there exists a sequence {n;} of
positive integers with n; — oo such that f"(z) — y. We denote the set of w-limit
points of z by w(z).

A point y € X is called an a-limit point of x if there exist a sequence {n;} of
positive integers with n; — oo and a sequence {;} of points such that f™(y;) =
and y; — y. The symbol a(z) denotes the set of a-limit points of .

A point y € X is called a special a-limit point of x if there exist a sequence {n;}
of positive integers with n; — oo and a sequence {y;} of points such that

(1) z=1yo,
(2) f™ (i) = yiz1,
(3) limisooys = ¥
The symbol sa(xz) denotes the set of special o-limit points of z and SA =

U sa(z).
zeX
A point y € X is called a special y-limit point of z if y € w(z) N sa(z). The

symbol sy(z) denotes the set of special v-limit points of z and ST = |J sy(x).
zeX

3. Main Results



ON THE SOME PROPERTIES OF THE LIMITS SETS 125

The following lemma founded in [BCMY).

Lemma 1. Let f € C°(St,S!) and I = [a,b] be an arc for some a,b € S* with
a#b, andlet INP = ¢.
(a) Suppose that there exists ¢ € I such that f(z) € I and x < f(x). Then
(i) ify€ I,z <y and f(y) & [y,b)], then [z,y] f-covers [f(z),b], and
(i) ify € I,y <z and f(y) ¢ [y,b], then [y,x] f-covers [f(zx),b].
(b) Suppose that there exists « € I such that f(x) € I and x > f(x). Then
(i) ifye I,z <y and f(y) ¢ [a,y], then [z,y] f-covers [a, f(x)], and
(ii) ify € Ly <z and f(y) ¢ [a,y], then [y,z] f-covers [a, f(x)].

Proposition 2. Let f € C°(8*, 8Y). If z € sa(y), then f*(x) € sa(y) for any
positive integer n.

Proof. Suppose that € sa(y). Then there exists a sequence of positive inte-
gers {n;} with n; — oo and a sequence of points {y;} such that f*'(y1) = yo =
y, f%(y;) = yi-1, and y; — x. We have f™~(f(y1)) = M) = v =¥,
P (Fen)) = FUM*H(wign)) = F() and f(yi) — f(a). Therefore f(a) €

sa(y). By induction, for any positive integer n, f*(x) € sa(y).
By definition of w-limit point and Proposition 2, we have the following corollary.
Corollary 3. If z € sa(y), then w(z) C sa(y)

Proof. Suppose that z € w(z). Then there exists n; — oo such that f™(z) — 2.
By Proposition 2, we have f"i(z) € sa(y). Since sa(y) is closed, we get z € sa(y).
Thus w(z) C sa(y).

Let z € §* and f € C°(S?, 8*) be given. Then we will use the symbols a (z) (
resp. a_(z)) to denote the set of all points y € S* such that there exist a sequence
{n;} of positive integers with n, — oo and a sequence {z;} of points such that
z; =y, fhi(x;) =xforeveryi >0and y < --- < & < -+ < Ty < a1 (resp.
Ty < Ty < - <2 < --- < y). Itisclear that if x ¢ P, then a(z) = ar(z)Ua_(z).

Lemma 4.
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(1) if for some € > 0, € a_(y) for every y € (x — ¢,x), then for every y €
(z —€x), z € sa(y).

(2) if for some € > 0, x € ay(y) for every y € (z,x + ¢€), then for every y €
(z,z+¢€), x € sa(y).

Proof. Without loss of generality, we will prove part (1). Let y € (z—e¢, z). Since z €
a-(y), we can find y; € (%5%,z) and ny > 0 with f™(y;) = y. By hypothesis, = €
a_(y1); thus we can find y; € (555, ) and ng > 0 with f™2(y2) = y1. Continuing
in this way , we obtain a sequence {y;} and n; > 0 with y; € (%%, z) and f™(y;) =
y;—1. We may assume that n; — oo. Thus z € sa(y).

Theorem A. Let f be a continuous map of the circle S* to itself. Suppose that P
is empty. Then R C ST.

Proof. Suppose that £ € R\ R. Then there exists an arc (a,b) containing x such
that f"(x) ¢ (a,b) for any positive integer n. Since x € R, we may assume that
there is a sequence z; € Rsuchthat a < 21 < 22 < - < x; < --- <z < b and
x; — . For each i, there exist n;, m; with n; < m; such that either

Zic1 < fhi(x) < M) < (1)
or

T; < fmi (171,) < fni ('L‘z) < Titi- (2)
For i =1,2,--- there exist sequences i, z; € (®;—1, Z;+1) and n;, m; with n; < m;
such that

i1 < fM(yi) <yi<z

and

Tim1 < 23 < fmi (Zi) <ZTi+1<ZT
By Lemma 1,

[yi,x] f™-covers [a, f™(y:)]

and

[2i,2] f™-covers [f™(z),b).
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Consequently,
[®i—1,2] f"-covers [z1,2;—1] for each i, (%)

and

[zi—1,2) f™-covers [ziy1,x] for each i. (%)

Now, let K; = [x;,z] for all positive integer i, Then K;_ 1 f™i-covers Ki;i.
Hence we may choose a closed arc L, in K; such that f™2(L;) = K3. Also, we can
take a closed arc Ly in Ly such that f™2%™4(Ls) = K. Continuing this process, we

k

may take a closed arc L; C K1 such that Ly D Lo D --- and f*é:1 mzi(Lk) = Koki1
foreach k=1,2,---. Lety € ﬂL Then z € w(y).

Now, take N such that zy_1 > y. By (x), for all 4 > N, there exists y; € [2;-1, ]
such that /™ (y;) = yi—1 where yv—1 = y. Since z; — z, we have y; — z. We may
assume that n; — oo. Hence z € sa(y). Thus z € w(y) N sa(y) C ST. It is easy to
show that if x € R, then ¢ € ST.

Let X be a compact metric space. A point y € X is said to be almost periodic if
given an open set U, containing y, one can find an integer n > 0 such that for any
integer ¢ > 0 there exists an integer r, ¢ < r < ¢ +n with f"(y) € U,. If for every
z € w(y), we have that w(z) = w(y), then w(y) is said to be a minimal set. It is
well known that for compact metric spaces a point y is almost periodic if and only
if y € w(y) and w(y) is a minimal set.

Lemma 5. For any f € C°(S',SY), if x € AP, then x € sa(x)

Proof. Suppose that  is almost periodic. Then & € w(z) and w(z) is a minimal
set. Take a sequence n; — oo, since f™ (w(z)) = w(x), we can find a sequence {2;}
with 2z; — oo such that z; € w(z), f*(2;) = zi—1 and f™1(z1) = z. Let y be a limit
point of this sequence. Then y € sa(z) and y € w(x) since w(z) is closed. In this
case w(z) is a minimal set. Hence z € w(y). By Corollary 3, z € sa(z).

Let Y be an arc in S?, and let Y denote the closure of Y as usual. A point
y € S1 is called a right-sided ( resp. left-sided ) accumulation point of Y if for
any z€ 8%, (y,2)NY # ¢ (resp. (2,9)NY £¢).
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The right-side closure Y. ( resp. left-side closure Y _ ) is the union of Y and
the set of right-sided ( resp. left-sided ) accumulation points of Y. A point which
is both a right-sided and a left-sided accumulation point of Y is called a two-sided
accumulation point of Y.

Theorem B. Ifz € P_NP,, then z € sa(z). If in addition z is not almost
periodic, then for some € > 0, either x € sa(y) for every y € (x —¢, ] or x € sa(y)
for every y € [z, z +¢€).

Proof. By Lemma 5, we may assume that z is not almost periodic. Then we can
find an € > 0 such that if n > 0 is given, then for some k > 0, f**(z) ¢ (z—¢, z+¢).
Since z € P_ N P, we have sequences of periodic points {p;} and {g;} such that
lim; 00 pi = ,lim;y00¢; = . Without loss of generality, we may assume that
T—e<p; <x< ¢ <x+e Let n; be the period of p; and m; the period of ¢;.
Let I; = n;m;. Then we can find k; > 0 such that f*i(z) ¢ (z — ¢,z +€). Without
loss of generality, we may assume that f'*i(x) < x — ¢ for every i. Since n; is the
period of p;, f%*i(p;) = p;: thus

(ps, a:)fl"k" — covers (z — €, p;). (*)

Let y € (z — €,z). We will show that z € sa(y). Since lim;_,, p; = z, we can find
a positive integer 4; such that x — e < y < p;; < z. It follows from (*) that there
exists z;, € (pi;,x) with fla%a(z; ) = y. Since 2, € (pi,, ), we can find a positive
integer 42 such that x — € < y < p;; < 2;; < iy < x. It follows from () that there
exists z;, € (pi,, ) with flie®i2 (z;,) = ;. Continuing in this way, it is possible to
find i;, p;; and z;; with

T—e<Y <Py <2y <Pip << Py; <24, <+ <T

such that fl"i ki (2i;) = #i;_,. Thus lim;_,o z;; = x since lim; o0 pi = ©. We may
assume that lim;_,  l;;k;; = 0o. Thus z € sa(y). To finish the proof of the theorem
it suffices to show that we can find a point v € (z —€,z) and n > 0 with f*(v) = z.
The argument that we will give here is taken from [BY]. Let g = f™ and L = [p,, z].
Then since g(p1) = f™(p1) = p1, K = g(L)Ug?(L)U--- is connected.
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Let [; denote the period of p; with respect to g. Now for each k = 1, 2, 3, consider
the sequence {g*i~*(p;)} in K which has a sequence converging to some uy € K.
Then we know that ¢*(us) = z. If upr = up for some k' < k”, then

g F(z) =" F (¢ (w)) = 6" () = ¢* (ui)) = z.

Since = ¢ P, we must have that u; are distinct points in K for each i = 1,2,3, so
that, one of these points has to lie in K, say ux. Then there are v € [p1,2] and
¢t > 1 such that ¢*(v) = uk. Therefore,

fEFImM () = g* (v) = *(¢*(v)) = ¥ (we) = .

The proof of theorem is complete.
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