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A GLOBAL STUDY ON SUBMANIFOLDS
OF CODIMENSION 2 IN A SPHERE

JoNG-IK HyuN

ABSTRACT. M be an n(> 3)-dimensional compact connected and oriented Riemann-
jan manifold isometrically immersed on an (n + 2)-dimensional sphere S™*2(c). If all
sectional curvatures of M are not less than a positive constant ¢, show that M is a
real homology sphere.

0. Introduction

Let M be an n—dimensional compact connected and oriented Riemannian man-
ifold isomerically immersed in an (n + 2)—dimensional Euclidean space R"*2. As
is well known, if M is of positive curvature, then M is a homotopy sphere [4]. This
result is generalized by Baldin and Mercuri [2], Baik and Shin [1] in the case of
non-negative curvature, which is stated as follows : if M is of non-negative cur-
vature, then M is either a homotopy sphere or diffeomorphic to a product of two
spheres. In particular, if there is a point at which of positive curvature, then M is
a homeomorphic to a sphere. This is a kind of reports which is devoted to study on
a submanifolds of codimension 2 in a sphere S"t%(c). In the last section we prove
the following :

Theorem 0.1. Let M be an n(> 3)—dimensional compact connected and oriented
Riemannian manifold isometrically immersed on an (n + 2)—dimensional sphere
S"*2(c). If all sectional curvatures of M are not less than a positive constant c,
then M 1is a real homology sphere.
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1. Associative curvature forms

Let V and W be real vector spaces of finite dimension n and p respectively, and
B be a symmetric bilinear map of V x V into W. Suppose that n > 2 and W has
an inner product <, >. Define the associative curvature form Rp : A2V x A2V — R
by

Rp(z Ay, z ANw) =< B(z, z), B(y,w) > — < B(z,w), B(y, 2) > . (1.1)

for any vectors 2,y,2 and w in V. The map Rp is again symmetric and hence the
eigenvalues of Rp is all real. Rp is said to be positive definite or positive semi-
definite according as all eigenvalues of Rp are positive or non-negative, respectively.
Next, we define the associative sectional curvature form Kp by

Kg(z,y) = Rz Ay, z \y) (1.2)

whenever 2 Ay # 0. The map Kp is said to be positive definite or positive semi-
definite according as Kpg(x,y) is positive or non-negative for linearly independent
vectors ¢ and y in V, respectively.

Consider the following conditions for the bilinear map B :

(1) There exists an orthonormal basis {€n+1, -+ ,€ntp} of W in such a way that the
real valued function H,(z,y) on V x V defined by H,(z,y) =< B(z,y),& > is
non-negative for any indicesa =n+1,--- ,n+p.

(2) Rp is positive semi-definite.

(3) Kp is positive semi-definite.

Lemma 1.1. (1) — (2) — (3) In particular, if p = 2, the conditions are all
equivalent.

Proof. we prove the assertion (1)—(2). Suppose the condition (1) holds. By making
use of the function Hp for an orthonormal basis {{,} an image of B is given by

B(z,y) = ZHa(m, y)€,. Then we get
Rp(z ANy, zAw) = Z(Ha(x, 2)H,(y,w) — Ho(z,w)Ho(y, 2)) (1.3)

and we have R = ZRa. In order to prove that Rp is positive semi-definite, it

a
suffices to show that all the map R, are positive semi-definite. For a fixed index
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a, let {e1, -+ ,e,} be an orthonormal basis for V which diagonalizes the function
H,, namely, Ha(ei,ej) = A\;0;j. Here and in the sequel, indices ¢ and j run over
the range {1,---,n} and an index a run over the range {n + 1,--- ,n + p}, unless

otherwise stated X; > 0 for all indices 4, because H, is positive seml-defimte Since
the inner product <, > of A%V is by definition

<TAYZAW>=<T,2><Yyw>— < T, w>< Y, 2 >,
then the function (1,3) of the function R, implies
Ra(e,- ANej,ex N el) = )\,’)\j <eiNej e Ne >

It means that {e; Ae; : i < j} forms an orthonormal basis for A2V which
diagonalizes R, with eigenvalues A;\;(> 0). So R, is positive semi-definite.

Next the assertion (2) — (3) is trivial. In the case where p = 2, it only remains
to prove that the condition (3) implies the condition (1).

Suppose that the map Kp is positive semi-definite. Then for all pair (z,y) of
linearly independent vectors, we have

Kp(z,y) =< B(z, ), B(y,y) — || B(z,y)|I> > 0, (1.4)

where || || means the norms for the vector space W. Now there might exist a non-
asymptotic vector z in V —{0}. Suppose that any vector z in V — {0} is asymptotic.
Then H,(x,z) must be equal to zero, because of H,(z,z) =< B(z,z),&, > for any
orthonormal basis {{,} for W. If this case can be regarded as the special one
of positive semi-definiteness, then it is nothing but the condition (1). Choose an
orientation for W, and for fixed vector zy and any vector z in V — {0}, let 6(z)
denote an angle from B(zg,2g) to B(z,z). 0(z) is defined only module 27 but it
follows from (1.4) that € is continuous function of V' — {0} into the closed interval
(~%, %] For a unit sphere S of V' centered with origin the restriction of # to § is
also continuous, so it must attain its maximum 6; and minimum ;. Again, taking
the inequality (1,4) into account, we get 6, — 62 < 3.

Let 0 = (01+602)/2,0, =0+ % and § =0 - Z, a.nd £(8) be a unit vector in W to
which the direct angle from B(To, xp) is equal to . Then by putting &,+1 = £(01)
and &,42 = £(82), {&n+1,&n+2} is an orthonormal basis for W, and by choosing the
angle 6 and @5 it turns out that

02 <0, <0(z)< 6, <6
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for any vector z in S. This implies that the angle between £(6(z)) and &,(a =
n +1,n + 2) is less than or equal to § for any z in S, and so is the angle between
B(z,z) and &,, because of B(z,z) = ||B(z, x)||£(6(z)).

Thus the forms H, are both positive semi-definite. This concludes the proof.

2. Curvature operator

In this section, the concept of the curvature operator in a Riemannian manifold
(M, g) will be introduced and the manifold structures of M which are influenced by
some conditions of the operator are investigated.

For a point  in M, let R, be an associated curvature operator. A linear map
P* of A2M,, into A2M for any point z in M is defined by u Av — R(--- ,u,v) and
by this duality an endomorphism p, of A2M into itself is manifactured. It turns
out that p, satisfies

< pr(u* Av*),w* A 2* >=< p(u,v),w" Az" >= R, (u,v,w,2) (2.1)

for any vectors u, v, w and z in M, where ii* denotes the dual form in M, associated
with the vector u. The operator p, is called a curvature operator at x. Since p;
is the symmetric operator, each eigenvalue of it is real. If all eigenvalues of p, are
contained in the interval [\, u], then one says A < p; < u, and if for any point z
on M this property is satisfied, then p(M) is a set which consists of all curvature
operators at all points in M.
Now, for an orthonormal basis {u1, - ,un} of M, and its dual basis {w?,
--- ,w"™} for M} relative to {uy,-- ,un}, the following equation is given :

< po(w* Aw?), w' Aw? >= R(us, uj, ui,u5) = g(R(us, uj)us, uj), (2.2)
from which . o .
< pr(w' Aw?), w* Aw? >= k(us, uj), (2.3)

where k(u;,u;) means a sectional curvature of a plane section spaned by the or-
thonormal vectors u; and u;. It follows that K(M) > 0 if p(M) > 0. Under the
pinching of the curvature operator p(M), the curvature tensor R and the Ricci
tensor S are also pinched as follows :

A(8adjx — Oindj1) < g(R(ui, u;)ur, ur) < pu(d0in — dirdi)A(n — 1)d;;

< S(us, uj) < p(n —1)8;;. (24)
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Thus, if A < p(M) < p. Remark here that the converse is not necessarily true.
Now, it plays an important role to restrict with the manifold structures of M

that the curvature operator p(M) is pinched. This is first studied by Yano and

Bochner [5]. Suppose that A < p(M) < u. Given any p-form w in APM, we put

Fw)=Y" " SG,jyw(d, iz, ,ip)

1,J t2eip

- P_i_l Z Z R(Z?]')k* l)W(’i,j,ig,“'ip)'U)(k,l,’l:g,,"' ,ip)
bgy ke, 318350 yip
then the fuction F(w) can be bounded from below. Namely, it follows from (2,4)
that F(w) > {(n — D)X - (p — 1)u}{w}?
This implies F(w) >0if A= 4% and 2p<n+1.
In order to generalize the theorem due to Yano and Bochner, the other expres-
sion of the function F will be considered by making use of the curvature operator
since components of any p-form w in APM} with respect to the orthonormal basis

(2.5)

{u1, -+ ,un} for M, are given by w(iy, - - - ,ip), where {w™ A--- Aw'}(i1, - ,ip €
{1,2,--- ,n}) is an orthonormal basis of AP M}, the p—form w is expressed by
w= Z ’U)(’il, ...... ’ip)wil Noeeeons A /w":P
i1, mp
For a p—form w at = we shall consider a family of exterior 2—forms (i1, - - ,ip)*
corresponded to the p—form w, which is defined by
P n
(B0, 0p)" = DY w(in, ke, Gy ks o+, p)W?* AW, (2.6)
Moreover a family of scalars (i1, - - - ,4,)%(*) associated with the form w is produced.
The scalar is also defined by
(i1, 5 8p)P) =< P (in, -+ 4 0p)%, (B2, ,8p)Y > . (2.7)
We have by (1,4)
-1
F(w) = A(w) - p—Q—B(w), (2.8)
where A(w) = > Y~ S(i,5) w(j,iz, -+ ,ip) w(j iz, ,ip),

":aj 'i21"' aip
B(U)) = Z Z R(?',Ja kv l) ’U)(i,j, i3a e 7ip) ’(U(k, l; i3a e aip)'
iij’kil i3, 77:1)
The following Lemma 2.1 and Lemma 2.2 are due to Meyer [3].
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Lemma 2.1. F(w) = %Zil,.. (i1, -+ ,ip)?)

Lemma 2.2. If w is an exterior p—form on M which does not vanishes ot x for
1 < p<n-—1, then the associated 2—form is not equal to zero at x.

. )ip

By making use of Lemmas 2.1 and 2.2, the following property is verified.

Theorem 2.3. Let M be an n—dimensional compact and oriented Riemannian
manifold. If all curvature operators satisfy p(M) > 0, then M is o real homology
sphere

Proof. The hypothesis p(M) > 0 implies that for a point z all eigenvalues of the
operator p, are positive, by (2,7) any exterior p—form w satisfies the condition

(il,”' ’ip)B(w) >0

for any indices i1, - - ,ip. It follows from Lemma 2.1 that F'(w) > 0.
It implies that in the equation

(Aw,w) = [[vwl® + Q(w),

where Q(w) = [;, F(w)dVas, Aw is the Laplacian of w and Vw is the covariant
derivative of w, the second term Q(w) of the right hand side is positive. If the
p—form w is harmonic, then triangle w = 0 and we obtain that F(w) and Aw
vanish everywhere on M. Thus the p—form is parallel. Since w is paralle], the
norm ||w|| vanishes everywhere on M. Therefore, by the Theorem due to Hodge the
p—th homology group HP? satisfies

HP(M,R)=0,0<p<n

This completes the proof.

3. Proof of Theorem 0.1.

Let S™t2(c) be an (n + 2)—dimensional sphere of constant curvature. Let i be
an isometrically immersion of an n—dimensional compact and oriented Riemannian
manifold M into the sphere S™*2(c). For any point of M we shall denote ¢(M) on
S"t2(c) by the same symbol z, since there is no danger of confusion and moreover
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the computation is local. Futhermore, a tangent vector u at z is identified with
d;_(u). Then the tangent space M, at z is a subspace of the tangent space M, of
ambient space M = S™*2(c) at z.

Let N, be the orthogonal complement of M, in M,, which is called a normal
space to M at z. Let H be the second fundamental form of the immersion . For the
triple (Mg, Nz, H;) at each point z in M, (algebraic preliminaries which prepared)
for section 1 can be applied.

Let Rp be the associated curvature form on M, which is defined by (1,1) and
K g be the real valued map on M; x M, defined by (1,2). From (1,1) we have

Re(uAv,wA2) = R(u,v,w,2) — (K uy,w >< v,z > — <u,z><v,w>), (3.1)
where R denotes the Riemannian curvature tensor on M. Then we get
Kp(u,v) = (K(u,v) — ) ([lulllv]®~ < u,v >?), (3.2)

where K(u,v) is the sectional curvature of plane spaned by linearly independent
vectors u and v on M,. By the assumption of the Theorem 0.1, it follows that
Kp > 0 from (3,2). Thus, by the Lemma 1.1 the associated curvature from Rg > 0.
Hence the curvature form p, at x of M satisfies p, > ¢, because of (2,1). Then we
have p(M) > ¢ > 0.

By the Theorem 2.1, M is a real homology sphere. This completes the proof.
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