J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 5(1998), no. 2, 95-100

EXTREMAL STRUCTURE OF $B(X^*)$

JOUNG NAM LEE

ABSTRACT. In this note we consider some basic facts concerning abstract M spaces and investigate extremal structure of the unit ball of bounded linear functionals on σ -complete abstract M spaces.

1. Introduction

The original definition of an abstract L_1 or M space is given by S. Kakutani. The representation theorems of Kakutani are followed by several results which give joint characterizations of the abstract L_p spaces and M spaces among general Banach lattices.

A Banach lattice $X(\mathrm{BL}, \mathrm{for\ short})$ for which $\|x+y\| = \mathrm{max}(\|x\|, \|y\|)$, whenever $x,y\in X$ and $x\wedge y=0$, is called an abstract M space. Let $1\leq p<\infty$. A BL X for which $\|x+y\|^p=\|x\|^p+\|y\|^p$, whenever $x,y\in X$ and $x\wedge y=0$, is called an abstract L_p space. It is obvious that every $L_p(\mu)$ space is an abstract L_p space if $p<\infty$ or an abstract M space if $p=\infty$. The converse is also true if $p<\infty$.

If $\{x_{\alpha}\}_{{\alpha}\in A}$ is a set in a BL, we denote by $\bigvee_{{\alpha}\in A} x_{\alpha}$ or by $\sup\{x_{\alpha}\}_{{\alpha}\in A}$ the (unique) element $x\in X$ which has the following properties: (1) $x\geq x_{\alpha}$ for all $\alpha\in A$ and (2) whenever $z\in X$ satisfies $z\geq x_{\alpha}$ for all $\alpha\in A$ then $z\geq x$. Unless the set A is finite, $\bigvee_{{\alpha}\in A} x_{\alpha}$ need not always exist in a BL [5].

For an element x in a BL X we put $x^+ = x \lor 0$ and $x^- = -(x \land 0) = (-x) \lor 0$. Obviously, $x = x^+ - x^-$ and $|x| = x^+ + x^-$. Especially, if x = u - v, $u \ge 0$, $v \ge 0$ in X, then $u = x^+ + u \land v$ and $v = x^- + u \land v$. Also, if $u \land v = 0$, then $u = x^+$ and $v = x^-$ [6].

Received by the editors March 10, 1998 and, in revised form Oct. 7, 1998.

¹⁹⁹¹ Mathematics Subject Classifications. Primary 46B42.

Key words and phrases. Banach lattice, M spaces, extreme point.

This paper was supported by the research fund of Seoul National University of Technology.

The dual X^* of a BL X is also a BL provided that its positive cone is defined by $x^* \geq 0$ in X^* if and only if $x^*(x) \geq 0$, for every $x \geq 0$ in X. For any $x^*, y^* \in X^*$ and every $x \geq 0$ in X, we have

$$(x^* \vee y^*)(x) = \sup \{x^*(u) + y^*(x - u); 0 \le u \le x\}$$

and

$$(x^* \wedge y^*)(x) = \inf \{x^*(u) + y^*(x - u); 0 \le u \le x\}.$$

For a BL X, if X is an abstract M space, then X^* is an abstract L space and if X is an abstract L space, then X^* is an abstract M space, respectively. Also, if X is a BL, then X^* is a space of regular functionals [3]. Obviously, for a BL X and $x^* \in X^*$, $x^*(x) = \sup\{|x^*(y)| : |y| \le x\}$ [4].

A BL X is said to be σ -complete if every order bounded set(sequence) in X has a sup, and a BL X is said to be bounded σ -complete, provided that any norm bounded and order monotone sequence in X is order convergent. Obviously, bounded σ -complete BL is σ -complete, but the inverse does not hold [5].

Since every $x^* \in X^*$ can be decomposed as a difference of two non-negative elements, it follows that every norm bounded monotone sequence $\{x_n\}_{n=1}^{\infty}$ in X is weak Cauchy. If, in addition, $x_n \stackrel{w}{\to} x$ for some $x \in X$ then $||x_n - x|| \to 0$ as $n \to \infty$. This is a consequence of the fact that week convergence to x implies the exitence of convex combinations of the x_n 's which tend strongly to x.

For a Banach space X, we always denote by B(X) and S(X) the unit ball and the unit sphere of X respectively. $x \in S(X)$ is called an extreme point of B(X) if for any given $y, z \in B(X)$ and $x = \lambda y + (1 - \lambda)z$ for some $0 < \lambda < 1$, then x = y = z. The set of all extreme points of B(X) is denoted by $\partial B(X)$. In this note we will investigate the extreme points of the unit ball of a dual space.

Now we show some propositions which will be needed in the sequel.

2. Main theorem

A BL X is an abstract L_p space if and only if for any $x, y \in X, x, y \ge 0$ implies ||x+y|| = ||x|| + ||y||. Moreover, $||u|| = ||x^+|| + ||u \wedge v||$, $||v|| = ||x^-|| + ||u \wedge v||$, where $x, u, v \in X$, x = u - v and $u \ge 0$, $v \ge 0$ [6]. Hence, we have the following result.

Lemma 1. Let a BL X be an abstract L_p space and $x \in X$. Then $x = x^+ - x^-$ is unique in the sense that if $x = u - v, u \ge 0, v \ge 0$ and ||u|| + ||v|| = ||x||, then $u = x^+$ and $v = x^-$.

Proposition 2. If a BL X is bounded σ -complete and B(X) is order closed, then there exists $x \in S(X)$ such that $x^*(x) = ||x^*||$ for every $x^*(\geq 0) \in X^*$, that is, x^* is norm attainable.

Proof. Let x_n be a positive element in S(X) such that $x^*(x_n) \to ||x^*||$. Since X is bounded σ -complete and B(X) is order closed, $y = \bigvee_n x_n$ exists in X and ||y|| = 1. Hence, $y \ge x_n \ge 0$ and $x^* \ge 0$ implies $||x^*|| \ge x^*(y) \ge x^*(x_n) \to ||x^*||$.

Note that the conclusion of Proposition 2 may not be true if an abstract M space X is not bounded σ -complete. For instance, let $X = c_0$ and $x^* = (c_n) \in l_1$ with infinitely $c_n \neq 0$. Then there does not exist $x \in S(X)$ such that $x^*(x) = ||x^*||$.

If a BL X is bounded σ -complete and B(X) is not order closed, then the conclusion of Proposition 2 is not true in general.

For a subset Y of a BL X, we define

$$Y^{\perp} = \{x \in X : |x| \land |y| = 0 \text{ whenever } y \in Y\}, \quad x^{\perp} = \{x\}^{\perp}.$$

If $x \in X = Y + Y^{\perp}$, then x can be uniquely decomposed into x = y + z, where $y \in Y$ and $z \in Y^{\perp}$. In this case, we write $x|_{Y} = y$ and $x^{*}|_{Y}(x) = x^{*}(y)$ for $x^{*} \in X^{*}$.

Proposition 3. If an abstract M space X is σ -complete and $x^* \in X^*$, then for any $\varepsilon > 0$, there exists a subspace Y of X such that $X = Y + Y^{\perp}$ and $||x^{*^{\perp}}||_{Y^{\perp}}|| < \varepsilon$, $||x^{*^{\perp}}||_{Y}|| < \varepsilon$.

Proof. Let x be in S(X) such that $x^*(x) > ||x^*|| - \varepsilon$, and put $Y = (x^-)^{\perp}$. Then $x^+ \in Y$, $x^- \in Y^{\perp}$, and by [5] $X = Y + Y^{\perp}$. Moreover, by properties of an abstract M space X^* ,

$$||x^{*^{+}}|_{Y}|| + ||x^{*^{+}}|_{Y^{\perp}}|| + ||x^{*^{-}}|_{Y}|| + ||x^{*^{-}}|_{Y^{\perp}}||$$

$$= ||x^{*^{+}}|| + ||x^{*^{-}}|| = ||x^{*}|| < x^{*}(x) + \varepsilon$$

$$= x^{*^{+}}|_{Y}(x) + x^{*^{+}}|_{Y^{\perp}}(x) - x^{*^{-}}|_{Y}(x) - x^{*^{-}}|_{Y^{\perp}}(x) + \varepsilon.$$

Since $x^{*+}|_{Y^{\perp}}(x) \leq 0$ and $x^{*-}|_{Y}(x) \geq 0$ it follows that

$$||x^{*^{+}}|_{Y^{\perp}}|| + ||x^{*^{-}}|_{Y}||$$

$$= ||x^{*^{+}}|| - ||x^{*^{+}}|_{Y}|| + ||x^{*^{-}}|| - ||x^{*^{-}}|_{Y^{\perp}}||$$

$$\leq ||x^{*^{+}}|| - x^{*^{+}}|_{Y}(x) + ||x^{*^{-}}|| - x^{*^{-}}|_{Y^{\perp}}(x)$$

$$< x^{*^{+}}|_{Y^{\perp}}(x) - x^{*^{-}}|_{Y}(x) + \varepsilon \leq \varepsilon.$$

Lemma 4. Let an abstract M space X be bounded σ -complete and B(X) order closed. Then $x^* \in X^*$ is norm attainable if and only if there exists a subspace Y of X satisfying $x^{*^+} = x^*|_Y$, $x^{*^-} = -x^*|_{Y^{\perp}}$.

Proof. Suppose that $x^* \in X^*$ is norm attainable. Then, by Proposition 2, there exist $x,y(\geq 0) \in S(X)$ such that $x^{*^+}(x) = \|x^{*^+}\|$ and $x^{*^-}(y) = \|x^{*^-}\|$. Since $x^{*^+} = x^*|_Y$ and $x^{*^-} = -x^*|_{Y^{\perp}}$, we may assume $x \in Y$ and $y \in Y^{\perp}$ (otherwise we replace x,y by $x|_Y$, $y|_{Y^{\perp}}$ respectively). Now, we put u=x-y. Then $\|u\|=\|x-y\|=\max\{\|x\|,\|y\|\}=1$ and thus, by properties of an abstract M space X^* , we get that

$$||x^*|| = ||x^{*^+}|| + ||x^{*^-}|| = x^{*^+}(x) + x^{*^-}(y)$$
$$= x^*|_Y(x) + x^*|_{Y^{\perp}}(-y) = x^*(u).$$

Conversely, choose $x \in S(X)$ such that $x^*(x) = \|x^*\|$, and define $Y = (x^-)^{\perp}$. Then $X = Y + Y^{\perp}$ and $x^+ \in Y$, $x^- \in Y^{\perp}$. Observe that $\|x^*\| = \|x^*|_Y \| + \|x^*|_{Y^{\perp}} \|$; to prove $x^{*^+} = x^*|_Y$ and $x^{*^-} = -x^*|_{Y^{\perp}}$, it suffices to show $x^*|_Y \ge 0$ and $-x^*|_{Y^{\perp}} \ge 0$ thanks to Lemma 1. Indeed, if $x^*|_Y(y) < 0$ for some $y(\ge 0) \in S(X)$, then we may assume $y \in Y$. Therefore, $z = -x^- - y$ satisfies $\|z\| = \max\{\|x^-\|, \|y\|\} = 1$ and thus,

$$||x^{*^{-}}|| \ge x^{*^{-}}(-z) = x^{*}(z) - x^{*^{+}}(z) \ge x^{*}(z)$$

$$= x^{*}|_{Y^{\perp}}(-x^{-}) - x^{*}|_{Y}(y) > x^{*}|_{Y^{\perp}}(-x^{-}) = -x^{*}|_{Y^{\perp}}(x).$$

Since $||x^{*}|| \ge x^{*}(x|_{Y}) = x^{*}|_{Y}(x)$, this clearly leads to a contradiction that

$$||x^*|| = ||x^{*^+}|| + ||x^{*^-}|| > x^*|_Y(x) - x^*|_{Y^{\perp}}(x) = x^*(x) = ||x^*||.$$

A similar argument would show that $-x^*|_{Y^{\perp}} \ge 0$.

Now we investigate the extreme points of the unit ball of a dual space. The sequence $\{x_n\}$ converges weakly to zero in a Banach space X if and only if $\{x_n\}$ is bounded, and $x^*(x_n) \to 0$ for every $x^* \in \partial B(X^*)$.

Theorem 5. Let an abstract M space X be σ - complete and $x^* \in S(X^*)$. Then $x^* \in \partial B(X^*)$ if and only if $x^*(x)x^*(y) = 0$ for all $x, y \in X$ such that $x \wedge y = 0$.

Proof. Sufficiency. First we show $||x^{*}|| ||x^{*}|| = 0$. In fact, by Proposition 3, for any $\varepsilon > 0$, there exist orthogonal subspaces Y, Z, of X such that X = Y + Z and $||x^{*}||_{Y}|| < \varepsilon$, $||x^{*}||_{Z}|| < \varepsilon$. Choose $x \in S(X)$ satisfying $x^{*}(x) > ||x^{*}|| - \varepsilon$, and let x = u + v, where $u \in Y$ and $v \in Z$. Then $x^{*}(u)x^{*}(v) = 0$ since $u \wedge v = 0$. If $x^{*}(v) = 0$, then

$$||x^*|| - \varepsilon < x^*(x) = x^{*^+}|_Y(u) - x^{*^-}|_Y(u)$$

$$< ||x^{*^+}|_Y|| + ||x^{*^-}|_Y|| < ||x^{*^-}|| + \varepsilon.$$

Let $\varepsilon \to 0$. Then $||x^*|| = ||x^*|| - ||x^{*}|| = 0$. Similarly, assume that $x^*(u) = 0$. Then $||x^{*}|| = 0$. Hence, without loss of generality, we may assume $x^* = x^{*}$.

Let $y^*, z^* \in S(X^*)$ satisfy $2x^* = y^* + z^*$. Then $2x^* = (y^{*^+} + z^{*^+}) - (y^{*^-} + z^{*^-})$ and by properties of an abstract M space X^* ,

$$||2x^*|| \le ||y^{*^+}|| + ||z^{*^+}|| + ||y^{*^-}|| + ||z^{*^-}||$$

$$= ||y^*|| + ||z^*|| = 2 = ||2x^*||.$$

Thus, by Lemma 1, we have $y^{*+} + z^{*+} = 2x^*$ and $y^{*-} = z^{*-} = 0$.

Now we show that $y^*=z^*=x^*$, i.e., $x^*\in\partial B(X^*)$. To this end we notice that $y^*(y)=z^*(y)=0$ whenever $x^*(y)=0$ (by [7], this means $x^*=ay^*=bz^*$, but $x^*,y^*,z^*\in S(X^*)$ and $2x^*=y^*+z^*$, so a=b=1). First we assume $y\geq 0$; then from $y^*(y)\geq 0$, $z^*(y)\geq 0$, and $y^*(y)+z^*(y)=2x^*(y)=0$ we have $y^*(y)=z^*(y)=0$. For the general case, since $x^*(y)=0$ and by the condition given in the theorem, $x^*(y^+)x^*(y^-)=0$, we have $x^*(y^+)=x^*(y^-)=0$. Hence, $y^*(y)=z^*(y)=0$ follows from the first case.

Necessity. Assume first that there exist $x, y \in X$ such that $x \wedge y = 0$ but $x^*(x) > 0$ and $x^*(y) > 0$. Then we put $Y = y^{\perp}$, and then by [5] $X = Y + Y^{\perp}$. Now, let $y^* = x^*|_Y$ and $z^* = x^*|_{Y^{\perp}}$. Then $||y^*|| > 0$, $||z^*|| > 0$ since $x \in Y$, $y \in Y^{\perp}$. Therefore, since

$$x^* = \|y^*\| \frac{y^*}{\|y^*\|} + \|z^*\| \frac{z^*}{\|z^*\|}$$

and $||y^*|| + ||z^*|| = ||x^*|| = 1$ according to Lemma 1 and the intrinsic M space properties, we get that $x^* \in \partial B(X^*)$, which is desired result.

REFERENCES

- 1. M. M. Day, Normed Linear Spaces, Springer-Verlag, Berlin and New York, 1973.
- J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, Berlin and New York, 1984.
- 3. L. V. Kantorvich and G. P. Akilov, Functional Analysis, Pergamon Press, 1982.
- 4. H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer-Verlag, Berin and New York, 1974.
- J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin and New York, 1979.
- 6. W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces I*, North-Holland, Amsterdam and London, 1971.
- 7. A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1987.
- 8. K. Yosida, Functional Analysis, Springer-Verlag, Berlin and New York, 1980.
- 9. A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, New York and Oxford, 1983.
- 10. E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, Inc., 1995.

DEPARMENT OF NATURAL SCIENCE, SEOUL NATIONAL UNIVERSITY OF TECHNOLOGY, SEOUL 139-743, KOREA.