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ON p-HYPONORMAL OPERATORS ON A HILBERT SPACE

HyunGg Koo CHA aAND JAE HEE KiMm

ABSTRACT. Let H be a separable complex Hilbert space and let £(?) be the x-
algebra of all bounded linear operators on H. An operator T in L(#) is said to be
p-hyponormal if (T*T)? — (TT*)? > 0for 0 < p < 1. If p = 1, T is hyponormal
and if p = %, T is semi-hyponormal. In this paper, by using a technique introduced
by S. K. Berberian, we show that the approximate point spectrum oo, (T) of a pure
p-hyponormal operator T is empty, and obtains the compact perturbation of T.

1. Introduction

Throughout this paper, the letter H is used for a complex separable Hilbert
space and the %-algebra of all bounded linear operators on H is denoted by L(H).
An operator T in L(H) is said to be p — hyponormal if (T*T)? — (TT*)P > 0 for
0<p<l Ifp=1,T is hyponormal and if p = %, T is semi-hyponormal. It is
well known that a p-hyponormal operator is g-hyponormal for ¢ < p ([1]). But the
converse of the above statement is not true in general.

Hyponormal operators have been studied by many authors. The semi-hyponormal
operator was first introduced by D. Xia in ([7]). The p-hyponormal operators have
been studied by A. Aluthge in ([1]). All those classes are related as the following

inclusions ;

1
Hyponormal C Semi-hyponormal C p — hyponormal for 0 < p < 3

1
Hyponormal C p — hyponormal for 3 < p < 1 C Semi-hyponormal.
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Moreover, those inclusions are known to be proper ([1],[5],(8]).
Let U|T| be the polar decomposition of T', where U is a partial isometry, |T is
a positive square root of 7*T and ker T' = ker |T'| = ker U.

Proposition 1.1 ([1],[5]). Let T = U|T| be p-hyponormal. Then the operator T =
|T|J2‘U|T|% 18 hyponormal for % <p<l,and (p+ %)- hyponormal for 0 < p < %

Proposition 1.2 ([5]). Let T = U|T| be p-hyponormal. If T = |T|2U|T|% is
normal, then T = T.

In Section 2, we introduce the technique of S. K. Berberian ([2]). For a p-
hyponormal T and a unital faithful *-representation ¢ which was obtained by S. K.
Berberian, we investigate the relation between T and ¢(T').

In Section 3, using the technique introduced by S. K. Berberian, we show that the
approximate point spectrum o,,(T) of a p-hyponormal operator T for 0 < p < 1 is
empty, and obtain the compact perturbation of T'.

2. A pure operator

The spectrum, the point spectrum and the approximate point spectrum of an
operator T in L(H) are denoted by o(T), 0(T) and 04, (T), respectively.

In [2], S. K. Berberian constructed an extension K of ‘H by means of bounded
sequences in H and the Banach limits, and obtained the faithful *-representation ¢
of L(H) on K. Here we present this technique in a simplified form.

Theorem 2.1 ([2]). Let H be a separable complex Hilbert space. Then there exist
a Hilbert space K O H and a unital faithful x-representation ¢ of L(H) on K with
the following properties :

(1) (D)l = IIT|| and ¢(A) < ¢(B) whenever A < B

(2) o(T) = o(¢(T)) and 0ap(T) = Gap(d(T)) = op(#(T))

An operator is said to be reducible if it has a nontrivial reducing subspace. If an
operator is not reducible, then it is called irreducible.

Proposition 2.2. If T is an irreducible operator, then ¢(T') is an irreducible op-

erator.
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Proof. Suppose that ¢(T') is reducible. Then there exists a nontrivial subspace M
of K such that ¢(T)M C M and ¢(T*)M C M, that is, p(T){z,} = {Tz,} € M
and ¢(TY*{x,} = {T*z,} € M for all {z,} = {z.} + N € M, where N =
{{zn}|lzn € H,LIM{||z.||} = 0}, LIM means the Banach limit. Put M; =
{znl{zn} € M}. If My = H, then obviously M = K by the construction of
K, which contradicts that ¢(T") is reducible. Thus, M is a proper subspace of
H. Hence for all z,, € M, Tz, and T*z,, are in M;, which contradicts that T is
irreducible. Therefore, ¢(T) is an irreducible operator.

An operator T is pure if it has no reducing subspace on which it is normal.
Proposition 2.3. If T is a pure operator, then ¢(T) is a pure operator.

Proof. If ¢(T) is not pure, then there exists a proper subspace M of K such that
the restriction of ¢(T") to M is normal. Put M; = {z,|{zn} € M}. Since ¢ is a
unital faithful x-representation of L(H) on K, the restriction of T' to My is normal,
which contradicts that T is pure.

Proposition 2.4. If an operator T is pure p-hyponormal, then T = IT[%U IT(% 18

a pure operator.

Proof. Suppose that 1" is not pure. Then there is a subspace H; of H such that
T3, is normal. By Proposition 1.2, 7|3, = T3, , which contradicts that T is pure.

Proposition 2.5. If T € L(H), then ¢(|T|) = |¢(T)| and ¢(|T;) = |¢(T)|i, where
IT|: is a positive square root of TT™.

Proof. Tt is clear that |¢(T)|2 = ¢(T)*¢(T) = ¢(T*T) = ¢(IT|?) = #(|T|)®>. By
the uniqueness of the square root of a positive operator, we have ¢(|T}) = |p(T)).
Similarly, ¢(|T:) = |¢(T)]:.

Proposition 2.6. If T is a p-hyponormal operator for 0 < p < %, then ¢(T) is a
p-hyponormal operator.

Proof. We need only to prove for p = 2%, for some n. By the assumption, we have

(T*T)? — (TT*)7 > 0.
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Thus, by Proposition 2.5,

(A(T™)B(T))7 — (B(T)p(T™))7"
S((T*T)) 7 — ¢((TT*))*
$((T*T)7") — ¢((TT*)?)
$((T*T)% — (TT*)7") > 0.

i

3. Spectra of p-hyponormal operators

For every operator T' € L(H), there is a Cartesian decomposition T' = X + Y,
where X = (T+T*) and ¥ = (T —T*). The operators X and Y are called the
real and imaginary parts of T, respectively.

The joint point spectrum o;,(T") of T = X 44Y is the set of all complex numbers
z = ¢ + 1y (z and y are real numbers) such that there exists a common nonzero
eigenvector f of X and Y such that

Xf==zf and Yf=uyf

In addition, z = re® € ¢;,(T) if and only if there exists a nonzero vector f such
that
Tf=zf and Tf=Zf,

equivalently, there exists a nonzero vector f such that

Uf =e®f and |T|.f=rf ([8))
Proposition 3.1 ([5]). If an operator T = U|T| is p-hyponormal for 0 < p < 1,
then 0jp(T) = op(T).
Proposition 3.2. If an operator T is pure p-hyponormal for 0 < p < %, then
op(T) = 0.

Proof. Suppose that there exists a A € 0,(T'). Since 0;,(T) = 0,(T’), by Proposition
3.1, there is a nonzero vector f such that Tf = Af and T*f = Af. Thus, the one-

dimensional vector space

M = {uflu € C}
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reduces T, and TT*f = TAf = ATf = |[M\*f and T*T(f) = T*(Tf) = A\T*f =
|A|2f. Hence, the restriction of T' to M is normal, which contradicts the assumption
that T is pure. Therefore, op(T) = 0.

Proposition 3.3. If an operator T is pure p-hyponormal for 0 < p < L, then

3
oap(T) = 0.

Proof. Suppose that T is a pure p-hyponormal operator for 0 < p < % Then by
Proposition 2.3 and 2.6, ¢(T) is a pure p-hyponormal operator. Thus, ,(¢(T)) = 0.
By Proposition 2.1, since

0ap(T) = 0ap($(T)) = op($(T)), 0ap(T) = 0.

By Proposition 1.1 and 2.5, we have the following.
Corollary 3.4. Let T = U|T| be pure p-hyponormal. If T = ITI%UIT]%, then
Uap(T) = 0.

The joint approximate point spectrum, 0;,(7T’) of an operator T' = X +14Y is the
set of all complex numbers z = x + iy which there exists a sequence {fn} of unit
vectors such that

Jim (X — 2D fall = lim [|(Y —yI)fall = 0.

It is evident that z € 0;,(T) if and only if there exists a sequence {f,} of unit
vectors such that

Jlim (T = 2D)fall = lim [T = 2D fall =0.

It is also evident that 0, (T") C 04p(T) for all T € L(#), and moreover, for a normal
operator T, we have

0ja(T) = 0ap(T) = o(T) ([8)).

Proposition 3.5 ([3]). If T' = U|T| is a p-hyponormal operator, then o;o(T) =
oap(T).

An operator T in L(H) is said to be strongly normal at X if there exists an
orthonormal sequence {z,} in # such that

Jim ()T = AD)an]| + (T = AL) ][} =0

An operator T is said to be strongly normal on a subset M of C if T' is strongly
normal at every point of M.
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Corollary 3.6. IfT = U|T| is a p-hyponormal operator, then T is strongly normal
on oap(T).

Proof. By Proposition 3.5, it is clear.

Proposition 3.7 ([6]). Let K(H) be the ideal of compact operators acting on H
and let T € L(H). Then T is strongly normal on a subset M of C if and only if
for every diagonal operator D with spectrum in M there ezrists a compact operator
K € K(H) with trace norm, E € L(H) and an isometric operator U of H onto
H & H such that

T=UYDa®E)U+K.

By Corollary 3.6 and Proposition 3.7, we have the following result :

Proposition 3.8. Let D be a diagonal operator in L(H). If T is p-hyponormal,
(D) C 04p(T) and given € > 0, then we may write

T=(D®E)+XK,

where K € K(H) with |K||1 < € and E € L(H), and | K||; is the trace norm of K
in K(H).
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