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PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR
CURVATURE ON SEMIRIEMANNIAN MANIFOLDS(I)

YOON-TAE JUNG, YUN-JEONG KIM,
S00-YOUNG LEE, AND CHEOL-GUEN SHIN*

ABSTRACT. In this paper, when N is a compact Riemannian manifold, we discuss
the method of using warped products to construct timelike or null future{or past)
complete Lorentzian metrics on M = [a,00) X ¢ N with specific scalar curvatures.

1. Introduction

By the results of Kazdan and Warner ([6, 7, 8]), if N is a compact Riemannian
n—manifold without boundary, n > 3, then N belongs to one of the following three
catagories:

(A) A smooth function on N is the scalar curvature of some Riemannian metric
on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Riemannian metric on
N if and only if the function is either identically zero or strictly negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Riemannian metric
on N.

This completely answers the question of which smooth functions are scalar cur-
vatures of Riemannian metrics on a compact manifold N.

In [6, 7, 8], Kazdan and Warner also showed that there exists some obstruction
of a Riemannian metric with positive scalar curvature (or zero scalar curvature) on
a compact manifold.

For noncompact Riemannian manifolds, many important works have been done
on the question of how to determine which smooth functions are scalar curvatures
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of complete Riemannian metrics on an open manifold. Results of Gromov and
Lawson ([5]) show that some open manifolds cannot carry complete Riemannian
metrics of positive scalar curvature, for example, weakly enlargeable manifolds.
Furthermore, they show that some open manifolds cannot even admit complete
Riemannian metrics with scalar curvatures uniformly positive outside a compact
set and with Ricci curvatures bounded ([5], [11] p. 322).

In [9, 10}, the author considered the scalar curvature of some Riemannian warped
product and its conformal deformation of warped product metric. And also in [4],
authors considered the existence of a nonconstant warping function on a Lorentzian
warped product manifold such that the resulting warped product metric produces
the constant scalar curvature when the fiber manifold has the constant scalar cur-
vature.

Ironically, even though there exists some obstruction of positive or zero scalar
curvature on a Riemannian manifold, results of [4] show that there exists no ob-
struction of positive scalar curvature on a Lorentzian warped product manifold, but
there may exist some obstruction of negative or zero scalar curvature.

In this paper, when N is a compact Riemannian manifold without boundary, we
discuss the method of using warped products to construct timelike or null future(or
past) complete Lorentzian metrics on M = [a,00) xy N with specific scalar cur-
vatures, where a is a positive constant. It is shown that if the fiber manifold N
belongs to class (A) or (B), then M admits a Lorentzian metric with negative scalar

curvature approaching zero near the end outside a compact set.

2. Main results

Let (N, g) be a Riemannian manifold of dimension n and let f : [@,00) — R be
a smooth function, where a is a positive number. The Lorentzian warped product
of N and [a,00) with warping function f is defined to be the product manifold
([a,00) x5 N,g') with
¢ = —dt* + f(t)g (2.1)
Let R(g) be the scalar curvature of (N, g). Then the scalar curvature R(t,z) of ¢’
is given by the equation

R(t,z) = 1

}T(B{R(g)(x) +2nf@®) ') +n(n—1)f(t)?*} 2.2)
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for t € [a,00) and z € N. (For details, cf. [3] or [4])
If we denote

u(t) = (@1), t>a
then equation (2.2) can be changed into

4n
n+1

u"(t) - R(t, z)u(t) + R(g)(@)u(t)' == =0. (2.3)

In this paper, we assume that the fiber manifold N is nonempty, connected and
a compact Riemannian n—manifold without boundary. Then, by Theorem 3.1,

Theorem 3.5 and Theorem 3.7 in [4], we have the following proposition.

Proposition 2.1. If the scalar curvature of the fiber manifold N is arbitrary con-
stant, then there exists a nonconstant warping function f(t) on [a,00) such that
the resulting Lorentzian warped product metric on [a,00) x5 N produces positive

constant scalar curvature.

However, the results of [4] show that there may exist some obstruction about the
Lorentzian warped product metric with negative or zero scalar curvature when the
fiber manifold has constant scalar curvature.

Remark 2.2. By Remark 2.58 in [1] and Corollary 5.6 in [12], if (a,b) is a finite in-
terval and n = 3, then all nonspacelike geodesics are incomplete. But on (—oo, +00)
there exists a warping function so that all non-spacelike geodesics are complete.
For Theorem 5.5 in [12] implies that all timelike geodesics are future (resp. past

) complete on (—o0,+00) Xy) N if and only if ft":m (H_Lv)idt = 4oo (resp.

1
fi‘;o (ﬁi;) * dt = +00) and Remark 2.58 in [1] implies that all null geodesics are

future (resp. past) complete if and only szt':oo vidt = +oo (resp. fi"oo vidt = +00)

(cf. Theorem 4.1 and Remark 4.2 in [2]).

If N admits a Riemannian metric of negative or zero scalar curvature, then we
let u(t) =t in (2.3), where a € (0, 1) is a constant, and we have

4n

< e
Rt @) < n+1

1
a(l—a)52—<0, t>a.

Therefore, from the above fact, Remark 2.2 implies the following:
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Theorem 2.3. Forn >3, let M = [a,00) x5 N be the Lorentzian warped product
(n + 1)-manifold with N compact n-manifold. Suppose that N is in class (A) or
(B), then on M there is a future geodesically complete Lorentzian metric of negative

scalar curvature outside a compact set.

We note that the term o(1 — a) achieves its maximum when o = % And when
u =13 and N admits a Riemannian metric of zero scalar curvature, we have

n 11
=" s t>
R n+14t2’ @

If R(t,x) is the function of only t-variable, then we have the following lemma
whose proof is similar to that of Lemma 1.8 in [10].

Theorem 2.4. If R(g) = 0, then there is no positive solution to equation (2.3)
with

n c1
< - -—= t>t
R(t)_ n+14t2 fO’l" Z Loy
where ¢ > 1 and to > a are constants.
Proof. Assume that
n c1
< —— t>t
R®)s-7"qgp otz
with ¢ > 1. Equation (2.3) gives
20 & i—u <0.

Let
u(t) =t%v(t), t2>to,

where a > 0 is a constant and v(t) > 0 is a smooth function. Then we have
u” = a(a — 1)t% 2u(t) + 20t ' () + t40"(2).
And we obtain
tev(t)ala — 1) + i—] + 200+ Ly (8) + T2 (8) < 0. (2.4)

Let & be a positive constant such that §2 = C—Zl. Then we have

el s

Dtlo@-H 4
o 4 2 4 =
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Then § is a constant independent on a. Equation (2.4) gives
20t (t) + t20" (t) < —6%v(t). (2.5)

Let 8 = 20 and we choose o > 0 such that 3 < 1, that is, o < % Then (2.5)

becomes

2
ﬁ ] / _(5 'U(t)
o)) < -2
Upon integration we have
t g2
tﬁv’(t) — TB’U'(T) < —/ i—;)_(%)ds, t>71>1. (26)

Here we have two following cases:
i) If v'(7) < 0 for some 7 > tp, then (2.6) implies that

tPu'(t) < -C

for some positive constant C' and for large t. We have

t 1-8
o) o)~ [ s =olr) = Tt —oo,

as 3 < 1. Hence v(t) < O for some t, contradicting that v(¢) > 0 for all t > ¢,.
i) We have v/(t) > 0 for all £ > {g. Equation (2.6) implies that

t 5% (s)
Bo (7Y —
v (1) /T o ds>0

for all t > 7 > to. As v/(t) > 0 for all ¢ > o, we have
to§2 1 52
Tﬂv/(fr) > ’U(T)/T ST_?ds = ’U(T)[;i_—ﬁ[—i'__ﬂ]l,tr

Let t — oo we have
v(r) &2

-1

Or after changing the parameter we have

Py (1) >

vt 1 &

- to.
o) SiT-p T
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Choosing o < % close to % so that 8 < 1 is close to 1 and using the fact that &
is independent on « or 3, we have

i) N
v(t) t
for a big integer N > 2. This gives

v(t) > CtN, t>t,

where C is a positive constant. (2.6) implies that
t (52N
Cs
P! (t) < 7PV (1) — / —82_—sﬁ—ds — —00 as t— oo.
T
Thus v'(¢) < 0 for ¢ large, which is also a contradiction. Hence there is no solution
to equation (2.3). 0

In particular, if R(g) = 0, then using Lorentzian warped product it is impossi-
ble to obtain a Lorentzian metric of uniformly negative scalar curvature outside a
compact subset. The best we can do is when u(t) = t7, or f(t) = tﬁT, where the
scalar curvature is negative but goes to zero at infinity.

Theorem 2.5. Suppose that R(g) = 0. Assume that R(t,z) = R(t) € C*([a, o0))
is a negative function such that
4n c 1
——— - <R{)<0 t> to,
nriaE <RS0 fort>t
where tg > a and 0 < ¢ < 1 are constants. Then equation (2.3) has a positive

solution on [a, 0o).

Proof. Since R(g) = 0 and R(t,z) < 0, the lower solution u_(t) is a small positive
constant.
Put u. (t) = (c+ +t71)™, where —1 < m < 0 is determined later. Then

2
+mlcy +tH™

W) = m(m = ey +¢1)™2 =

t4

L (5) - Rit)us ()

= n4-47—L1 [m(m — 1)(cy + t—l)m‘zz}Z +m(cy + t*l)m—lt—za-] — R(t)(cq +t7H)™
= o )~ ey + 7)o e + 77 - R

4 2 1
)

(c+ +t™ YY" m(m — 1)(cy + t_l)" 1 +micy +1~ 1)‘

IA

c
4
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For 0 < ¢ < ¢ < 1 there exists 5 > a such that

1
m(m — 1)(cy + t”l)_2zz +mley +t71)

for t > tp. Since 0 < ¢ < ¢; < 1, there exists m < 0 such that

S0

R

m? +m+ 541- <o0.
Hence there exists tg > a such that if ¢ > tg, then

2cl

—1y—2 1 —1y—
m(m — 1)(cy +t71) 2t—4+m(c++t 1) lt—3+Zt2 <0.

Therefore u.(t) is our upper solution. Since t > to > a, we can take the lower

lution u_(t) so that 0 < u_(t) < ut(t). O
emark 2.6. When R(g) = 0, the results in Theorem 2.4 and Theorem 2.5 are
almost sharp. For if f(t) = i for t > a, then we have
n 11
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