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A CERTAIN SUBGROUP OF THE WEYL
GROUP OF SOME KAC-MOODY ALGEBRAS

YEONOK KM

ABSTRACT. In this paper, we construct the minimal set of generators which generate
the subgroup T of the Weyl group of Kac-Moody algebra.

1. Notation and some basic facts about root systems of Kac-Moody
algebras

We first recall some of the basic definitions in Kac-Moody theory.

n

An n x n integral matrix A = (aij)ij=1

trix(GCM) if

is called a generalized Cartan ma-

aii = 2, i=12,...,n,
Qg S 0 if ’L;é], (1.1)
a5 = 0 implies Aji; = 0.

A realization of A is a triple (h,II,IIV), where § is a complex vector space,

II ={a,az,...,a,} Ch* and IIY = {a), 0y, ... ,a)} C b are indexed subsets in

h* and b respectively, satisfying the following three conditions;

II and ITV are linearly independent
aj(e))=ai; (5,5=12,...,n) (1.2)
dimh =2n —1, wherel = rank A.

An nxn matrix A = (a;)7;-1 is called symmetrizable if there exists an invertible
diagonal matrix D and a symmetrix matrix B = (b; ;) such that DA = B.
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The Kac-Moody algebra g = g(A) with the generalized Cartan matrix A is the Lie
algebra generated by the elements e;, f; (i = 1,2,...,n) and § with the following
defining relations;

[h,h'] =0  for h, K €,
[h‘7 ei] = ai(h’)ei, [h’ f'l-] = '—a‘i(h)fi (7‘ =12,...,mh€ b)a
[ei, fz] = (Sija;/ for ’I:,j = 1, 2, o, Nn,

(ade;)' =% (e;) = (ad fi)' 7™ (f;) =0  for i #j.

(1.3)

The elements of II (resp. IIV) are called the simple roots (resp. simple coroots)
of g.
For each i € {1,2,... ,n}, let ; € Aut(h*) be the simple reflection on h* defined
by
r(A) = A — May ).

The subgroup W of GL(h*) generated by the r;’s (i = 1,2,... ,n) is called the
Weyl group of g.

We adopt the following notation: for a real column vector *(uy,us, ... ,un), we
writeu >0ifallu; >0and u >0 if all u; > 0.

Theorem 1.1. [1] Let A be a real n x n generalized Cartan matriz. Then one and
only one possibilities holds for both A and tA:

(Fin) det A # 0; there ezists u > 0 such that Au > 0; Av > 0 impliesv >0 or v =0.
(Aff) corank A = 1; there exists u > 0 such that Au = 0; Av > 0 implies Av = 0.
(Ind) there exists u > O such that Au < 0; Av >0, v > 0 impliesv = 0.

Referring to cases (Fin), (Aff) or (Ind), we will say that A is of finite, affine or
indefinite type, respectively.

Let A = (ai;)7 ;=1 be a generalized Cartan matrix. We associate to A a graph
S(A), called the Dynkin diagram of A as follows. If a;ja;; < 4 and |a;;| > |aj;|, then
the vertices i and j are connected by |a;;| lines, and these lines are equipped with an
arrow pointing toward 4 if |a;;| > 1. If aj;a,; > 4, the vertices ¢ and j are connected
by a bold-faced line equipped with an ordered pair of integers (|a;;|, |a;il)-

An indecomposable generalized Cartan matrix A is said to be of strictly hyper-
bolic type(resp. hyperbolic type) if it is of indefinite type and connected proper
subdiagram of S(A) is of finite(resp. finite or affine) type.
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Suppose that A is symmetrizable generalized Cartan matrix. Then the non-
degenerate symmetric bilinear form (, ) can be defined on h* and A can be expressed

as
4= (Hos)”
(0, ) i,j=1

which is the same as the usual expression of the generalized Cartan matrix[3].

2. Structure of the Weyl group of some Kac-Moody algebra

We know the Weyl group W is a Coxter group generated by r;,...,7r, and
satisfies the following relations

r2=1 (rr)™ =1 (i #7)

where m;; € [2, 00) are given in terms of the generalized Cartan matrix by following
table;

Qi Qg4 0 1 2 3 >4
mij 2 3 4 6

Definition 2.1 A Coxter group generated by {r;|i € I} is called a free Coxter
group, if the order of r;r; is infinite for all ¢ # j € I.

Lemma 2.2. If (q;,a:)(ay,a;) < (ou,05)2 fori,j = 1,...,n, then W is a free
Cozter group generated by r1,... ,7n.-

Proof. If i # j, then
2(au, ;) 2(aj, i)
(a’i, OL,’) (aj7 aj)
A, 0y)?
(i, @) (j, )
4(a, o) _

- (ai7 aj)z B

AijQj; =

4.

The above table shows r;; has infinite order.
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From now on, we always assume that A = (a)7;—0 is an (n + 1) x (n + 1)
indecomposable symmetrizable generalized Cartan matrix, and S(A) is the Dynkin
diagram corresponding to A. Let W = (rg,71,...,7,) be the Weyl group of A.
Denote W= (r1,... ,r5). Set T = {rBae| B € VE’}

Recall that for each real root a we have defined a reflection r,, by

ra(A) = A= Aa")a (X €b*).

Then 754, = BroB~L.
In this paper, we shall normalize (,) so that (ap, ap) = 1.

Lemma 2.3. [4] Let ry,r, ---7i, = 1, 1,75, # 7i;,,Ti;, where s > 2 and s is
minimal for such expressions. Then s =2m > 4 and r;, =15y = -+ = T4y, _,,
Tip = T4, =+ =T, . Furthermore, m = 3,4 or 6.

Theorem 2.4. Let P = { i | (i, ;) < (a0, )} and Q = { i | (a0, ) = 0}.
IfPUQ = {0,1,...,n}, then there ezists a minimal subset I of W such that
(raolBe ) =T

Proof. Set W= {w e I/i/l wag = ap}. Clearly W = (ri] ricg = ap) and Wis a
subgroup of V W Construct a set I by choosing exactly one element from each left
coset of WVOV

First, we show that (rge,| 8 € WO/) C (rgao| BET ). By the construction, for
each w € Vif,’ there exists only one w’ € I such that wW = o ’Vi\//’ This implies
w W' € W and hence way = w'ag. Therefore 70, = Twia,- Next, we shall show
that I has no proper subset J such that (rge,| 3 € J) = T. Suppose J & I and
(Tpao) BET) =T.

Then there exists fo € I with By ¢ J. Since (rgq| B € J) = T, there exist

B, -, B such that 75,0, = 78,007 Bs00 * * * TB:e With t minimal. Then we have

roBy  Baro - - BeroBy HPoroBy B = 1.

We claim that ,3[1,6“.17'0 # roﬂi_lﬂH.l forall 1 <i <t—1 and B; *Boro #
r083; 1 By. Suppose not then ,3,-+1r0,6;r11 = B;roB; ! for some 4, and hence rp, a0 =
8,00, Which contradicts to the minimality of ¢. Similarly, suppose that 3, LBorg =
roB; *Bo. Then B * Boroco = rof; * Pocto.

This implies —3; Loy = rofB; 180, and hence G; 18yap = ag. This contra-
dicts to the fact that fBy,8; € I and By # B:. By Lemma 2.3, (ror;)* = 1 for
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some it where k = 3,4,6. On the other hand, i € P U Q implies (@, ;) = 0 or
(i, ;) < (o, ;) and hence (ror;)2 = 1 or ror; has an infinite order. We come to
a contradiction.

Corollary 2.5. Let I be the subset of Wwhich is constructed in the Proof of The-
orem 2.4. Then there exists a one-to-one correspondence between Wag and I.

Proof. Let W be as al)j)ve. For each w € I/f/,' there exists exactly one element w’ € [
such that wW —= w'W. Define a map ¢ : Wao — I by ¢(wag) = w'. Clearly
¢ is onto. We only need to prove that ¢ is one-to-one. For wy,ws € Vif, suppose
P(wiap) = Pp(waap). .

Then wlﬁ = ng. Thus wy 1w1 € W, and hence w0y = waayg.

Theorem 2.6. Let P and Q) be the same sets as in Theorem 2.4. If PUQ =
{0,1,... ,n}, then T is a free Coxter group which is normal in W.

Proof. Clearly T is a normal subgroup of W. We need to show that T is a free
Coxter group. Let’s enumerate all elements of I by I = {£1,...,8m}. We claim
that (B;a0, Bj00) < —1 for i # j. In fact,

(Bicxo, Bix0) = (B; * Bicxo, o)
= (ap + k1oy + -+ - + knan,00) where k; € Zxg
= (ap, ap) + k1(ay, a0) + -+ - + kn(an, ao)

k1 kn
=1+—2—a01+---+—a0n

2
<1- %aioam for some i€ P (3]
-1 2(vo, @;)?
(ai)ai)
<1-2=-1.

Since (Biao, Bico) = (Bjco, Bico) = (@0, o), (Bicwo, Bico) (B0, Bjon) = (a0, ag)? =
1 < (Bicw, Bjon)?. Hence (rg,q, | B € I) is a free Coxter group by Lemma 2.2.

3. Hyperbolic case
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Lemma 3.1. [3]. Let A = (aij)z j=o be a generalized Cartan matriz of hyperbolic
type.

Suppose a;j # 0 and let Sy be the subdiagram of S(A) consisting of vertices i and
J. Then the following properties are satisfied:

(a) If n =2, then Sy is one of the following diagrams:

Or——0, n—'—‘;n, o—'———-?o, o@:‘:)), Oé

(b) If n =3, then Sz is one of the first three diagrams above.
(c) If n > 4, then Sy is one of the first two diagrams above.
(d) If A is of strictly hyperbolic type, then n < 4.

Corollary 3.2. Let A = (aij)ijo be a generalized Cartan matriz of hyperbolic
type and P, Q be the same sets as in Theorem 2.4. If PUQ = {0,1,... ,n}, then
rank A < 3 and T is also a free Coxter group.

Proof. 1t follows immediately from Theorem 2.4 and Lemma 2.2.

Theorem 3.3. Let A, P, Q be as in Corollary 3.2. If PUQ ={0,1,... ,n} and
S(A) has no cycle, then the following properties are satisfied:

(a) If A is of strictly hyperbolic type of rank 3, then |I| = Iﬁ/] /2.

(b) If A is of hyperbolic type of rank 3 which is not strictly hyperbolic, then I is
infinite.

(c) If A is of hyperbolic type of rank 2, then T is generated by the set {ro, 17071}

Proof. Suppose that rank A = 3. Then we may assume that P = {0,1}, Q = {2}.
Then W = {1,72}. Suppose A is of strictly hyperbolic type. Then Wis finite, and

hence
1| = [W/W | = [W/|W | = |W/2.

Suppose that A is of affine type. Then W= {ri(rir2)™, (r1r2)™|m € Z}. Thus
Wis infinite and |W| = 2. Therefore I is infinite. Suppose rank A = 2. Then
W= {1,71} and hence T = (rg,r17071)-

2 -2 0 0 -
Example. Let A = (—2 2 —1). Then W= {1,7r1,717g, 17971, 72,7211}, W =
0 -1 2

o
(r2) and I = {1,71,79m1}. Wag = {ao,r100,72r100}. T = (10, Tryags Traryap) -
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Theorem 3.4. Let A, P, Q be as in Theorem 3.3. If PUQ = {0,1,... ,n} and
S(A) has a cycle, then there exists a one-to-one correspondence between Wao and
W

Proof. Since S(A) has a cycle, rank A = 3 and P = {0,1,2}, @ = ¢. Hence
W = {1}. If wjop = waoyg for wy, wp € ﬁ/,' then wz_lwlao = o and hence wz—lwl €
W= {1}. Therefore w; = ws.
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