J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 5(1998), no. 2, 149-155

A CERTAIN SUBGROUP OF THE WEYL GROUP OF SOME KAC-MOODY ALGEBRAS

YEONOK KIM

ABSTRACT. In this paper, we construct the minimal set of generators which generate the subgroup T of the Weyl group of Kac-Moody algebra.

1. Notation and some basic facts about root systems of Kac-Moody algebras

We first recall some of the basic definitions in Kac-Moody theory.

An $n \times n$ integral matrix $A = (a_{ij})_{i,j=1}^n$ is called a generalized Cartan matrix (GCM) if

$$\begin{cases} a_{ii} = 2, & i = 1, 2, \dots, n, \\ a_{ij} \le 0 & \text{if } i \ne j, \\ a_{ij} = 0 & \text{implies } a_{ji} = 0. \end{cases}$$

$$(1.1)$$

A realization of A is a triple $(\mathfrak{h}, \Pi, \Pi^{\vee})$, where \mathfrak{h} is a complex vector space, $\Pi = \{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subset \mathfrak{h}^*$ and $\Pi^{\vee} = \{\alpha_1^{\vee}, \alpha_2^{\vee}, \ldots, \alpha_n^{\vee}\} \subset \mathfrak{h}$ are indexed subsets in \mathfrak{h}^* and \mathfrak{h} respectively, satisfying the following three conditions;

$$\begin{cases}
\Pi \text{ and } \Pi^{\vee} \text{ are linearly independent} \\
\alpha_{j}(\alpha_{i}^{\vee}) = a_{ij} \quad (i, j = 1, 2, \dots, n) \\
\dim \mathfrak{h} = 2n - l, \quad \text{where } l = \operatorname{rank} A.
\end{cases}$$
(1.2)

An $n \times n$ matrix $A = (a_{ij})_{i,j=1}^n$ is called symmetrizable if there exists an invertible diagonal matrix D and a symmetrix matrix $B = (b_{i,j})$ such that DA = B.

Received by the editors Sep. 30, 1998 and, in revised form Nov. 26, 1998.

¹⁹⁹¹ Mathematics Subject Classification 17B67.

Key words and phrases. Kac-Moody algebra, Weyl group.

The Kac-Moody algebra $\mathfrak{g} = \mathfrak{g}(A)$ with the generalized Cartan matrix A is the Lie algebra generated by the elements e_i , f_i (i = 1, 2, ..., n) and \mathfrak{h} with the following defining relations;

$$\begin{cases}
[h, h'] = 0 & \text{for } h, h' \in \mathfrak{h}, \\
[h, e_i] = \alpha_i(h)e_i, & [h, f_i] = -\alpha_i(h)f_i & (i = 1, 2, \dots, n; h \in \mathfrak{h}), \\
[e_i, f_i] = \delta_{ij}\alpha_i^{\vee} & \text{for } i, j = 1, 2, \dots, n, \\
(ad e_i)^{1-a_{ij}}(e_j) = (ad f_i)^{1-a_{ij}}(f_j) = 0 & \text{for } i \neq j.
\end{cases}$$
(1.3)

The elements of Π (resp. Π^{\vee}) are called the simple roots (resp. simple coroots) of \mathfrak{g} .

For each $i \in \{1, 2, ..., n\}$, let $r_i \in \operatorname{Aut}(\mathfrak{h}^*)$ be the simple reflection on \mathfrak{h}^* defined by

$$r_i(\lambda) = \lambda - \lambda(\alpha_i^{\vee})\alpha_i$$
.

The subgroup W of $GL(\mathfrak{h}^*)$ generated by the r_i 's (i = 1, 2, ..., n) is called the Weyl group of \mathfrak{g} .

We adopt the following notation: for a real column vector $^t(u_1, u_2, \ldots, u_n)$, we write u > 0 if all $u_i > 0$ and $u \geq 0$ if all $u_i \geq 0$.

Theorem 1.1. [1] Let A be a real $n \times n$ generalized Cartan matrix. Then one and only one possibilities holds for both A and ${}^{t}A$:

- (Fin) det $A \neq 0$; there exists u > 0 such that Au > 0; $Av \geq 0$ implies v > 0 or v = 0.
- (Aff) corank A = 1; there exists u > 0 such that Au = 0; $Av \ge 0$ implies Av = 0.
- (Ind) there exists u > 0 such that Au < 0; $Av \ge 0$, $v \ge 0$ implies v = 0.

Referring to cases (Fin), (Aff) or (Ind), we will say that A is of finite, affine or indefinite type, respectively.

Let $A = (a_{ij})_{i,j=1}^n$ be a generalized Cartan matrix. We associate to A a graph S(A), called the Dynkin diagram of A as follows. If $a_{ij}a_{ji} \leq 4$ and $|a_{ij}| \geq |a_{ji}|$, then the vertices i and j are connected by $|a_{ij}|$ lines, and these lines are equipped with an arrow pointing toward i if $|a_{ij}| > 1$. If $a_{ij}a_{ji} > 4$, the vertices i and j are connected by a bold-faced line equipped with an ordered pair of integers $(|a_{ij}|, |a_{ji}|)$.

An indecomposable generalized Cartan matrix A is said to be of strictly hyperbolic type(resp. hyperbolic type) if it is of indefinite type and connected proper subdiagram of S(A) is of finite(resp. finite or affine) type.

Suppose that A is symmetrizable generalized Cartan matrix. Then the non-degenerate symmetric bilinear form (,) can be defined on \mathfrak{h}^* and A can be expressed as

$$A = \left(\frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}\right)_{i,j=1}^n$$

which is the same as the usual expression of the generalized Cartan matrix[3].

2. Structure of the Weyl group of some Kac-Moody algebra

We know the Weyl group W is a Coxter group generated by r_i, \ldots, r_n and satisfies the following relations

$$r_i^2 = 1$$
 $(r_i r_j)^{m_{ij}} = 1$ $(i \neq j)$

where $m_{ij} \in [2, \infty)$ are given in terms of the generalized Cartan matrix by following table;

$\boxed{a_{ij}a_{ij}}$	0	1	2	3	≥ 4
m_{ij}	2	3	4	6	∞

Definition 2.1 A Coxter group generated by $\{r_i|i\in I\}$ is called a free Coxter group, if the order of r_ir_j is infinite for all $i\neq j\in I$.

Lemma 2.2. If $(\alpha_i, \alpha_i)(\alpha_j, \alpha_j) \leq (\alpha_i, \alpha_j)^2$ for i, j = 1, ..., n, then W is a free Coxter group generated by $r_1, ..., r_n$.

Proof. If $i \neq j$, then

$$a_{ij}a_{ji} = rac{2(lpha_i,lpha_j)}{(lpha_i,lpha_i)}rac{2(lpha_j,lpha_i)}{(lpha_j,lpha_j)} \ = rac{4(lpha_i,lpha_j)^2}{(lpha_i,lpha_i)(lpha_j,lpha_j)} \ \geq rac{4(lpha_i,lpha_j)^2}{(lpha_i,lpha_j)^2} = 4.$$

The above table shows $r_i r_j$ has infinite order.

From now on, we always assume that $A = (a_{ij})_{i,j=0}^n$ is an $(n+1) \times (n+1)$ indecomposable symmetrizable generalized Cartan matrix, and S(A) is the Dynkin diagram corresponding to A. Let $W = \langle r_0, r_1, \ldots, r_n \rangle$ be the Weyl group of A. Denote $\mathring{W} = \langle r_1, \ldots, r_n \rangle$. Set $T = \{r_{\beta\alpha_0} | \beta \in \mathring{W}\}$.

Recall that for each real root α we have defined a reflection r_{α} by

$$r_{\alpha}(\lambda) = \lambda - \lambda(\alpha^{\vee})\alpha \quad (\lambda \in \mathfrak{h}^*).$$

Then $r_{\beta\alpha_0} = \beta r_0 \beta^{-1}$.

In this paper, we shall normalize (,) so that $(\alpha_0, \alpha_0) = 1$.

Lemma 2.3. [4] Let $r_{i_1}r_{i_2}\cdots r_{i_s}=1$, $r_{i_j}r_{i_{j+1}}\neq r_{i_{j+1}}r_{i_j}$, where $s\geq 2$ and s is minimal for such expressions. Then $s=2m\geq 4$ and $r_{i_1}=r_{i_3}=\cdots=r_{i_{2m-1}}$, $r_{i_2}=r_{i_4}=\cdots=r_{i_{2m}}$. Furthermore, m=3,4 or 6.

Theorem 2.4. Let $P = \{ i \mid (\alpha_i, \alpha_i) \leq (\alpha_0, \alpha_i)^2 \}$ and $Q = \{ i \mid (\alpha_0, \alpha_i) = 0 \}$. If $P \cup Q = \{0, 1, \ldots, n\}$, then there exists a minimal subset I of \mathring{W} such that $\langle r_{\beta\alpha_0} | \beta \in I \rangle = T$

Proof. Set $\widetilde{W} = \{ \omega \in \mathring{W} \mid \omega \alpha_0 = \alpha_0 \}$. Clearly $\widetilde{\mathring{W}} = \langle r_i \mid r_i \alpha_0 = \alpha_0 \rangle$ and $\widetilde{\mathring{W}}$ is a subgroup of \mathring{W} . Construct a set I by choosing exactly one element from each left coset of $\mathring{W}/\mathring{\mathring{W}}$.

First, we show that $\langle r_{\beta\alpha_0} | \beta \in \mathring{W} \rangle \subset \langle r_{\beta\alpha_0} | \beta \in I \rangle$. By the construction, for each $\omega \in \mathring{W}$, there exists only one $\omega' \in I$ such that $\omega \widetilde{\mathring{W}} = \omega' \widetilde{\mathring{W}}$. This implies $\omega^{-1}\omega' \in \widetilde{\mathring{W}}$ and hence $\omega\alpha_0 = \omega'\alpha_0$. Therefore $r_{\omega\alpha_0} = r_{\omega'\alpha_0}$. Next, we shall show that I has no proper subset J such that $\langle r_{\beta\alpha_0} | \beta \in J \rangle = T$. Suppose $J \subsetneq I$ and $\langle r_{\beta\alpha_0} | \beta \in I \rangle = T$.

Then there exists $\beta_0 \in I$ with $\beta_0 \notin J$. Since $\langle r_{\beta\alpha_0} | \beta \in J \rangle = T$, there exist β_1, \ldots, β_t such that $r_{\beta_0\alpha_0} = r_{\beta_1\alpha_0}r_{\beta_2\alpha_0}\cdots r_{\beta_t\alpha_0}$ with t minimal. Then we have

$$r_0\beta_1^{-1}\beta_2r_0\cdots\beta_tr_0\beta_t^{-1}\beta_0r_0\beta_0^{-1}\beta_1=1.$$

We claim that $\beta_i^{-1}\beta_{i+1}r_0 \neq r_0\beta_i^{-1}\beta_{i+1}$ for all $1 \leq i \leq t-1$ and $\beta_t^{-1}\beta_0r_0 \neq r_0\beta_t^{-1}\beta_0$. Suppose not then $\beta_{i+1}r_0\beta_{i+1}^{-1} = \beta_i r_0\beta_i^{-1}$ for some i, and hence $r_{\beta_{i+1}\alpha_0} = r_{\beta_i\alpha_0}$, which contradicts to the minimality of t. Similarly, suppose that $\beta_t^{-1}\beta_0r_0 = r_0\beta_t^{-1}\beta_0$. Then $\beta_t^{-1}\beta_0r_0\alpha_0 = r_0\beta_t^{-1}\beta_0\alpha_0$.

This implies $-\beta_t^{-1}\beta_0\alpha_0 = r_0\beta_t^{-1}\beta_0\alpha_0$, and hence $\beta_t^{-1}\beta_0\alpha_0 = \alpha_0$. This contradicts to the fact that $\beta_0, \beta_t \in I$ and $\beta_0 \neq \beta_t$. By Lemma 2.3, $(r_0r_i)^k = 1$ for

some i where k = 3, 4, 6. On the other hand, $i \in P \cup Q$ implies $(\alpha_0, \alpha_i) = 0$ or $(\alpha_i, \alpha_i) \leq (\alpha_0, \alpha_i)^2$ and hence $(r_0r_i)^2 = 1$ or r_0r_i has an infinite order. We come to a contradiction.

Corollary 2.5. Let I be the subset of \mathring{W} which is constructed in the Proof of Theorem 2.4. Then there exists a one-to-one correspondence between $\mathring{W}\alpha_0$ and I.

Proof. Let \widetilde{W} be as above. For each $\omega \in \mathring{W}$, there exists exactly one element $\omega' \in I$ such that $\omega \widetilde{W} = \omega' \widetilde{W}$. Define a map $\phi : \mathring{W}\alpha_0 \to I$ by $\phi(\omega \alpha_0) = \omega'$. Clearly ϕ is onto. We only need to prove that ϕ is one-to-one. For $\omega_1, \omega_2 \in \mathring{W}$, suppose $\phi(\omega_1 \alpha_0) = \phi(\omega_2 \alpha_0)$.

Then $\omega_1 \widetilde{\mathring{W}} = \omega_2 \widetilde{\mathring{W}}$. Thus $\omega_2^{-1} \omega_1 \in \widetilde{\mathring{W}}$, and hence $\omega_1 \alpha_0 = \omega_2 \alpha_0$.

Theorem 2.6. Let P and Q be the same sets as in Theorem 2.4. If $P \cup Q = \{0, 1, \ldots, n\}$, then T is a free Coxter group which is normal in W.

Proof. Clearly T is a normal subgroup of W. We need to show that T is a free Coxter group. Let's enumerate all elements of I by $I = \{\beta_1, \ldots, \beta_m\}$. We claim that $(\beta_i \alpha_0, \beta_j \alpha_0) \leq -1$ for $i \neq j$. In fact,

$$(\beta_{i}\alpha_{0}, \beta_{j}\alpha_{0}) = (\beta_{j}^{-1}\beta_{i}\alpha_{0}, \alpha_{0})$$

$$= (\alpha_{0} + k_{1}\alpha_{1} + \dots + k_{n}\alpha_{n}, \alpha_{0}) \text{ where } k_{i} \in \mathbb{Z}_{\geq 0}$$

$$= (\alpha_{0}, \alpha_{0}) + k_{1}(\alpha_{1}, \alpha_{0}) + \dots + k_{n}(\alpha_{n}, \alpha_{0})$$

$$= 1 + \frac{k_{1}}{2}a_{01} + \dots + \frac{k_{n}}{2}a_{0n}$$

$$\leq 1 - \frac{1}{2}a_{i0}a_{0i} \text{ for some } i \in P \quad [3]$$

$$= 1 - \frac{2(\alpha_{0}, \alpha_{i})^{2}}{(\alpha_{i}, \alpha_{i})}$$

$$< 1 - 2 = -1.$$

Since $(\beta_i \alpha_0, \beta_i \alpha_0) = (\beta_j \alpha_0, \beta_j \alpha_0) = (\alpha_0, \alpha_0), (\beta_i \alpha_0, \beta_i \alpha_0)(\beta_j \alpha_0, \beta_j \alpha_0) = (\alpha_0, \alpha_0)^2 = 1 \le (\beta_i \alpha_0, \beta_j \alpha_0)^2$. Hence $\langle r_{\beta_i \alpha_0} | \beta_i \in I \rangle$ is a free Coxter group by Lemma 2.2.

3. Hyperbolic case

Lemma 3.1. [3]. Let $A = (a_{ij})_{i,j=0}^n$ be a generalized Cartan matrix of hyperbolic type.

Suppose $a_{ij} \neq 0$ and let S_2 be the subdiagram of S(A) consisting of vertices i and j. Then the following properties are satisfied:

(a) If n = 2, then S_2 is one of the following diagrams:

- (b) If n = 3, then S_2 is one of the first three diagrams above.
- (c) If $n \geq 4$, then S_2 is one of the first two diagrams above.
- (d) If A is of strictly hyperbolic type, then $n \leq 4$.

Corollary 3.2. Let $A = (a_{ij})_{i,j=0}^n$ be a generalized Cartan matrix of hyperbolic type and P, Q be the same sets as in Theorem 2.4. If $P \cup Q = \{0, 1, \ldots, n\}$, then rank $A \leq 3$ and T is also a free Coxter group.

Proof. It follows immediately from Theorem 2.4 and Lemma 2.2.

Theorem 3.3. Let A, P, Q be as in Corollary 3.2. If $P \cup Q = \{0, 1, ..., n\}$ and S(A) has no cycle, then the following properties are satisfied:

- (a) If A is of strictly hyperbolic type of rank 3, then $|I| = |\mathring{W}|/2$.
- (b) If A is of hyperbolic type of rank 3 which is not strictly hyperbolic, then I is infinite.
 - (c) If A is of hyperbolic type of rank 2, then T is generated by the set $\{r_0, r_1r_0r_1\}$.

Proof. Suppose that rank A=3. Then we may assume that $P=\{0,1\}$, $Q=\{2\}$. Then $\widetilde{\hat{W}}=\{1,r_2\}$. Suppose A is of strictly hyperbolic type. Then \hat{W} is finite, and hence

$$|I|=|\mathring{W}/\widetilde{\mathring{W}}\>|=|\mathring{W}|/|\widetilde{\mathring{W}}\>|=|\mathring{W}|/2.$$

Suppose that A is of affine type. Then $\mathring{W} = \{r_1(r_1r_2)^m, (r_1r_2)^m \mid m \in \mathbb{Z}\}$. Thus \mathring{W} is infinite and $|\mathring{W}| = 2$. Therefore I is infinite. Suppose rank A = 2. Then $\mathring{W} = \{1, r_1\}$ and hence $T = \langle r_0, r_1r_0r_1 \rangle$.

Example. Let $A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$. Then $\mathring{W} = \{1, r_1, r_1r_2, r_1r_2r_1, r_2, r_2r_1\}$, $\mathring{W} = \langle r_2 \rangle$ and $I = \{1, r_1, r_2r_1\}$. $\mathring{W}\alpha_0 = \{\alpha_0, r_1\alpha_0, r_2r_1\alpha_0\}$. $T = \langle r_0, r_{r_1\alpha_0}, r_{r_2r_1\alpha_0} \rangle$.

Theorem 3.4. Let A, P, Q be as in Theorem 3.3. If $P \cup Q = \{0, 1, ..., n\}$ and S(A) has a cycle, then there exists a one-to-one correspondence between $\mathring{W}\alpha_0$ and \mathring{W} .

Proof. Since S(A) has a cycle, rank A=3 and $P=\{0,1,2\},\ Q=\phi$. Hence $\widetilde{\mathring{W}}=\{1\}$. If $\omega_1\alpha_0=\omega_2\alpha_0$ for $\omega_1,\ \omega_2\in\mathring{W}$, then $\omega_2^{-1}\omega_1\alpha_0=\alpha_0$ and hence $\omega_2^{-1}\omega_1\in\mathring{W}=\{1\}$. Therefore $\omega_1=\omega_2$.

REFERENCES

- 1. V. G. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990.
- C. Lu and K. Zhao, Structure of Weyl groups of some Kac-Moody algebra, Northeast. Math. J. 13(2) (1977), 177-180.
- 3. Z. Wan, Introduction to Kac-Moody Algebra, World Scientific Publishing Co. Pte. Ltd, 1991.
- K. Chao, C. Lu, C.-A. Liu, Weyl Groups of some Kac-Moody Algebras, J. Algebra 179 (1996), 200-207.

DEPARTMENT OF MATHEMATICS, SOONGSIL UNIVERSITY, SEOUL 156-743, KOREA.