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A RESULT OF DUALITY FOR BISHOP’S PROPERTY (5)

Jong-KwaNG Yoo

ABSTRACT. In the present paper the author studies the decomposition property (8}
of the bounded linear operators.

1. Introduction

Bishop [2] introduced the notion of an operator with a duality theory and gave
a certain sufficient condition for an operator to have a duality theory. In the
spectral decomposition theory of bounded linear operators the decomposition prop-
erty (6) is an elementary and important property. All spectral, decomposable, and
hyponormal operators have this property, but there are some ordinary operators
which do not have this property, for example, the right shift operator on a Hilbert
space £2(N). In 1984, Putinar [15] constructed a functional model for hyponormal
operators that showed them to be subscalar, and hence to possess a certain property
introduced by Bishop.

Given a complex Banach space X, let £(X) denotes the Banach algebra of all
continuous linear operators on X, and T™ denote the dual operator of T.

Definition 1.1. An operator T € L(X) is said to have Bishop’s property () if
for every open subset U of the complex plane C and for every sequence of analytic
functions fr, : U — X such that (T — M) fn(A) converges uniformly to zero on
each compact subset of U, it follows that fr,(\) — 0 as n — oo, uniformly on each
compact subset of U.

Received by the editors Nov. 3, 1997 and, in revised form April 8, 1998.

1991 Mathematics Subject Classifications. Primary 47A11, Secondary 47B40.

Key words and phrases. Bishop’s property, decomposition property, decomposable operator,
single-valued extension property.

23



24 JONG-KWANG YOO

Example 1.2. The left shift operator L on the Hilbert space €2(N) is an example
of an operator without Bishop’s property ((3).

Proof. Let U :=C\ ({0} U {X: |A\| =1}), and let {e;}2, be the usual orthonormal
basis for /5(N).  We define f,, : U — £»2(N) by

n)\i_leiﬂ for 0< |>\l <1
(*) fn()\) = ;

0 for 1 <Al

The infinite series (*) converges on U and then f, is analytic on U. Then clearly
(L—AI) fo(A) = 0and so (L—AI) f,(A) converges uniformly to zero on each compact
subset of U. But

n _1
Il = 7 (= AP

A

on 0 < |A] < 1. This completes the proof.

Putinar must be given credit as one of the first to recognize the importance of
Bishop’s property () in localizing the analytic functional calculus of an operator
and the corresponding decomposition of its spectrum. Clearly, Bishop’s property
(B) implies that T has the single-valued extension property (SVEP) which means
that for every open subset U of C, the only analytic solution f : U — X of the
equation (T'— AI)f(A\) =0 for all A € U is the constant f = 0.

Definition 1.3. An operator T € L(X) is said to have decomposition property (8)
if given an arbitrary open covering {U,V} of C, every x € X has a decomposition
T =u+v where u,v € X satisfy u = (T — AI)f(A) on C\U and v = (T — AI)g(\)
on C\V for some pair of X-valued analytic functions f and g on C\U and C\V,
respectively.

Definition 1.4. An operator T € L(X) is called decomposable if for every open
covering {U,V} of the complex plane C, there exists a pair of T-invariant closed
linear subspaces Y and Z of X such thato(T|Y)C U, o(T|Z)CV and X =Y +2Z,

where o denotes the spectrum.

In [5], Foias showed that every decomposable operator (and therefore spectral
operators in the sense of Dunford, all generalized scalar operators in the sense
of Colojoara and Foias, compact operators, and unitary, normal, and self-adjoint
operators on a Hilbert space) has condition (4). It follows easily from Proposition
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1.3.8 of [5] that an operator T' € L£(X) is decomposable if and only if it has both
properties (3) and (6).

Theorem 1.5 (Lange’s Theorem [13]). A bounded linear operator T on a re-
flexive Banach space is decomposable if and only if both T and its adjoint T™ have
condition (B). Moreover, T is decomposable if and only if T™ 1is.

Albrecht and Eschmeier [1] have recently shown that the property (3) char-
acterizes, up to similarity, the restrictions of decomposable operators onto closed
invariant subspaces.

Theorem 1.6 (Albrecht and Eschmeier [1]). The properties (8) and (d) are
dual to each other. i.e., an operator T € L(X) satisfies Bishop’s property (B3) if
and only if its adjoint operator T* satisfies decomposition property (8), and the

corresponding statement remains valid if both properties are interchanged.

Miller and Miller [14] showed that an operator T" has property (§) if and only
if its adjoint 7™ has Bishop’s property (). Within this class of operators, it is
shown that quasisimilarity preserves essential spectra.

2. Decomposition property (§)

The next Theorem is due to Finch [9], its corollary provides a useful test for
operators that fail to have condition (6).

Theorem 2.1. Let T be a bounded linear operator on a Banach space X. If the
range of T is all of X, but T is not one-one, then T does not have the SVEP.

Corollary 2.2. Let T be a bounded linear operator on a Hilbert space X. If T is
bounded from below, but T is not dense in X, then T' does not have condition (6).

Proof. Since 0 € 0com(T)\0ap(T) = op(T*)\Osur(T*), we have T* does not have the
SVEP. Thus T™* does not have condition (3), and hence T does not have condition

(6)-

It is clear that the right shift operator R on #3(N) is an example of an operator

without decomposition property (§). In general, if T is an isometry but is not onto
then T does not have condition (9).

We shall need the following known criterion [1].
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Theorem 2.3. An operator T € L£(X) has decomposition property (8) if and only
if there exist a decomposable operator R € L(Z) on some Banach space Z and a
continuous linear surjection QQ € L(Z, X) such that TQ = QR.

Example 2.4. The left shift operator on €3(N) has property (6).

Proof. Since the right shift operator R on £5(N) is subnormal as the restriction of
the bilateral right shift on ¢2(Z). Clearly, R has property (3). Since L is the adjoint
of R, it follows from theorem 1.6 that L has property (6).

The left shift operator L on ¢3(N) is an example of a bounded linear operator
that has condition (J), but whose adjoint does not. This shows that condition (4)
is not preserved under the adjoint operation. Also, it is clear that the identity
operator I on ¢2(N) has condition (4). If T does not have condition (§), then I
commutes with T, but T = IT = TI does not have condition (§). Unlike the
compact operators, the operators that have condition (§) do not form an ideal in
the algebra of operators on a Banach space. The natural related operator in the
context of the spectral theory is the restriction operator. ~We give an example of

an operator T' and a T—invariant subspace Y such that 7' has condition (§), but
T|Y does not.

Example 2.5. Let T be the right bilateral shift operator on €3(Z), and let Y :=
span{e; : i = 1,2,---,}", where {e; : ¢ € Z} is the usual orthonormal basis for
22(Z). Now T s unitary and so certainly has condition (), but T|Y is isomorphic
to the right shift on €3(N), and hence does not have condition (8), by Ezample 1.2.

The next theorem is immediate.

Theorem 2.6. Let T be a bounded linear operator on a Banach space X. Then
T has decomposition property (8) if and only if so does the quotient operator TY
induced by X/Y for every T'—invariant closed linear subspace Y of X.

Proof. Assume that T has property (). Let ¥ be a closed T-invariant subspace
of X and let P : X — X/Y be the projection operator. Then there exists a
decomposable operator R € £(Z) on some Banach space Z and a continuous linear
surjection Q € £(Z, X) such that TQ = QR. Clearly, TY (PR) = (PR)Q and hence
TY has property (6). This completes the proof.
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Theorem 2.7. If T € L(X) and if A is a linear isomorphism between the Banach
spaces X and Y, then T has property (8) if and only if ATA™! does.

Proof. Assume that T has property (4). Then there exist a decomposable operator
R € L(Z) on some Banach space Z and a continuous linear surjection Q € £(Z, X)
such that TQ = QR. Thus AQ is a continuous linear surjection such that (AQ)R =
(ATA~')AQ. Hence AT A~! has property (). Conversely, Assume that AT A~! has
property (d). Then there exist a decomposable operator R € £(Z) on some Banach
space Z and a continuous linear surjection Q € £(Z,Y') such that (ATA~1)Q = QR.
Thus A~1Q is a continuous linear surjection such that (A~*Q)R = (T'A~)Q. Hence
T has property (d).

Corollary 2.8. Suppose that ¢ : L(X) — L(Y) is a spectrum-preserving surjec-
tive linear mapping. If T € L(X) has property (0), then either ¢(T) € L(Y) has
property (&) or ¢(T) € L(Y') has Bishop’s property (3).

Proof. The statement follows from Theorem 2.7 and Theorem 2 of [16].

Corollary 2.9. Let X be an infinite-dimensional complex Banach space. Assume
that ¢ : L(X) — L(X) is a point spectrum preserving linear mapping. Then
T € L(X) is decomposable if and only if ¢(T) does.

Proof. The statement follows from Theorem 2.7 and Theorem 3 of [11].

Corollary 2.10. Let H be an infinite-dimensional complex Hilbert space. Assume
that ¢ : L(H) — L(H) is a surjectivity spectrum preserving surjective linear map-
ping. Then T € L(H) is decomposable if and only if $(T') does.

Proof. The statement follows from Theorem 2.7 and Theorem 4 of [11].

The next example show that the property (4) fails to preserved under the sum
of operators.

Example 2.11. Let T be a right shift operator on ¢:(N). Then (T + T*) and
%(T — T™*) are normal, and so they have decomposition property (§). But T =
$(T+T*)+ X(T — T*) does not have decomposition property (8).

The property (d) is preserved under the direct sum of operators.

Theorem 2.12. A bounded linear operator Ty & T, on the Banach space X1 ® Xo
has property (6) if and only if T; has property (8), (i = 1,2).
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Proof. Suppose that T} & T> € £(X; & X3) has property (§). Then by Theorem
2.3, there exist a decomposable operator R € £(Z) on some Banach space Z and a
continuous linear surjection Q € £(Z, X1 ® X?) such that QR = (T1 & T5)Q. Let
P, : X; & Xo — X, (i = 1,2) be the projection operator. Then Q; := P, 0@ :
Z — X is a continuous linear surjection, and Q;R = T;Q;. Hence T; € L(X,)
has property (§). Conversely, assume that T; has property (4), (i = 1,2). Then by
Theorem 2.3, there exist a decomposable operator R; € L(Z;) on some Banach
space Z; and a continuous linear surjection Q; € L(Z;, X;) such that Q;R; =
T.Q;, (i = 1,2). It follows from (Theorem 2.1 [5]) that Ry & Ro € L(Z1 & Z3) is
decomposable. Also, Q18Q2 € L(Z1®Z2, X1®X>) is a continuous linear surjection,
and (Q1 ® Q2)(R1 ® R2) = (T1 & T2)(Q1 @ Q2). Hence Ty @ T has property (4).

Corollary 2.13. A bounded linear operator Ty & Ty on the Banach space X1 & X»
has Bishop’s property (B) if and only if T; does (i = 1,2).

In some cases we can conclude that T has the decomposition property (§) if we
know that T'|Y does for certain T'—invariant subspaces Y. Let o be a spectral set of
o(T), and let f be a scalar-valued function, analytic on a neighborhood U of o(T'),
such that f(A) =lono and f(A)=0on o(T)\o. Define

£(o) = %/rf(,\)(xz—:r)—ldx,

where I is a finite union of rectifiable Jordan curves such that o(T') lies inside I
and T Cc U. It is well known [6] that each £(o) is a projection such that £(c)X
reduces T.

Theorem 2.14. Let T € L(X). Suppose that o(T) is disconnected with spectral
sets 01,02, -+ 0n Such that o(T) = U{o; : i = 1,2,---n}. Let Y; = E(0:)X, (i =
1,2,---n). Then T has property (&) if and only if each restriction T|Y; does (i =
1,2,---n).

Proof. It is clear that X = @, X; and T = @,(T]Y;). It follows from theorem
2. 12 that T has property () if and only if T'|Y; (i = 1,2,---n) has property (9).
Theorem 2.15. Let T be a bounded linear operator on a Banach space X. If the
spectrum of T is totally disconnected, then T' has condition (8).

Proof. Suppose that if U; and U; are open sets that cover o(T"). Each point of o(7T")
has a clopen neighborhood in either U; or Us. Because o(T') is compact, a finite
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number of these clopen neighborhoods cover o(T'). Let Ny, Ng,---, Ny be those
clopen neighborhoods that are contained in U;. For each point A of o(T") such that
Adsin Uz \ (Uf=1 N;), we may choose a clopen neighborhood D) C U, such that
DxNN;=¢, 7=1,2,--- ,k. Then clearly

k k
(UM UDr: A e a0\ (1 M)}

is an open cover of o(T") and so there exists a finite subcover. Let ¢ be all mem-
bers of the subcover from the set {7, Na,---, Ni}, and let 7 be the remaining
neighborhoods in the subcover. Since ¢ and 7 are clopen and disjoint, there exist
scalar-valued analytic functions f and ¢ such that

1 ono lonTt
f= and g=

OonrT Oonco

1 1
£(o) == ari ) FYA = T)"1d\, and &(7) == 3mi I, gAML = T)"tdA,

where T'; is a finite union of rectifiable Jordan curves such that o(T) lies inside I';
andI'; C U;. Let Y := £(0) and Z := £(7). It follows from ([6], VII 3.20 ) that both
Y and Z are T-invariant subspaces suchthat X =Y+ 2, o(T|Y)C o CU; and
o(T|Z) € 7 C U,. Hence z € X has a decomposition z = u; + uz where u; € X
satisfy u; = (T ~ A)h;()\) on C\ U; for some pair of X-valued analytic functions h;
on C\ U;, and so T has condition (§). This completes the proof.

The next example show that the decomposition property (4) fails to preserved
under compact perturbations.

Example 2.16. This is an ezample of an operator that has decomposition property
(), and a compact perturbation of it that does not decomposition property (6).

Proof. In [10], Herrero gave an example of a compact operator K € £(£5(Z)) such
that T'+ K has the following properties, where T is the right bilateral shift on ¢2(Z)

oI+ K)={AeC: |\ =1},
and if Y # {0} is an (T + K)—invariant subspace of ¢2(Z), then either

(*) d(T+EK)NY)=0(T+K) or o((T+K)Y)={reC:]\ <1}
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By Schauder’s theorem, T* + K™ is also compact perturbation of a unitary opera-
tor. Since T' and T™ are unitary, they have the decomposition property (&). Suppose
that both 7'+ K and T™ 4 K* have the decomposition property (4). Then T + K
is decomposable. In order to show that this is impossible. Let

1
U:={/\€(C:Re)\<§}, V:={)\€C:R6)\>—-%}.

Since {U, V'} is an open cover of ¢(T + K), there exist T + K-invariant subspace Y;
and Y5 such that

0(Z)y=Y1+Ys, o(T+K)Y1)CU and o((T+K)|Y2)CV.

Case 1. Suppose that either Y; or Y5 is trivial, say Y7 = {0}. Then Y; = ¢5(Z) and
o(T + K|Y;) = o(T + K) € V. This contradicts that o((T + K)|Y;) C V.
Case 2. Suppose that neither Y7 nor Y3 is trivial. Then o((T + K)|Y1) C U. This
contradicts condition ().

In all, at least one of T+ K and 7™ + K* does not have the decomposition
property (8). This completes the proof.

Under stronger hypotheses we can conclude that condition () is preserved under
certain types of perturbations. In [13], it is shown that if 7" is decomposable and §
is an operator that commutes with 7" such that S has totally disconnected spectrum,
then T + S is decomposable. From this, the next theorem is immediate.

Theorem 2.17. Let T be a decomposable operator on a Banach space X, and let
S be a bounded linear operator on X that commutes with T. If
(1) S is a quasinilpotent operator, or
(2) S is a compact operator, or
(8) S has discrete spectrum,
then T + S is decomposable. In particular T + S has condition (9).

Corollary 2.18. Let T be an arbitrary bounded linear operator on a Banach space
X, let Q be a quasinilpotent operator on X that commutes with T, and let K be a
compact operator on X. Then QT, KT, and TK all have condition (6).

It is well known (5] that a convergent sequence of decomposable operators on a
reflexive Banach space converge to a decomposable operator. Also Vasilescu [17]

has shown that the uniform limit of commuting operators with the single valued
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extension property also has the single valued extension property, but we have been
unable to extend the result to the decomposition property () even under hypotheses
as strong as Vasilescu. We construct a sequence of operators with decomposition
property (&) that converges in the strong operator topology to an operator without
property (8).
Example 2. 19. In this example we construct a sequence of operators with con-
dition (8) that converges in the strong operator topology to an operator without
condition (6). Define Ty, : €2(N) — £o(N) (n=1,2,---) by
ek+1 for 1<k<n-1
Thex := 0 for k=n
€k for n+1<k,
where {ex : k € N} is the usual orthonormal basis, and extend T, linearly and

continuously to all of £2(N). Clearly, the T,, are bounded linear operators. Let A be
the right shift on C*.  We may define the operator

A I:C" @ l(N) — C" @ £>(N),

where I is the identity operator on ¢2(N). Then c(A®I) = ag(A)Uc(I) = {0,1}
and so A® I has condition (8) by Theorem 2.15. Since T, is isomorphic to A® I, it
follows from Theorem 2.7 that each T, has condition (§). Let R be the right shift
on £2(N). Since for any x = (xx) in €2(N), we have

o0
I(R-T)z|* <2 Y |kl
k=n+1

This implies that T,, converge to R in the strong operator topology. By Corollary
2.2, R does not have condition (§). This completes the ezample.

It is known [5] that if T € £(X) has the SVEP, and f is an analytic scalar-valued
function on some neighborhood of o(T"), then f(T') also has the SVEP. Moreover,
it is known [7] that if T € £(X) is decomposable, and f is an analytic scalar-valued
function on some neighborhood of ¢(T"), then f(7T') is decomposable.

Theorem 2.20. Let T be a bounded linear operator on a Banach space X. Let f
be a scalar-valued analytic function defined on a neighborhood of o(T). Then if T
and T* have condition (8), so do f(T) and f(T*).

Proof. Since T and T™ have condition (J), they are decomposable. Thus f(7T') and
f(T™) are decomposable and therefore have condition (§).
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